NASA Knows Where The Meteors Are

NASA has been tracking bright meteoroids (“fireballs”) using a distributed network of video cameras pointed upwards. And while we usually think of NASA in the context of multi-bazillion dollar rocket ships, but this operation is clearly shoe-string. This is a hack worthy of Hackaday.

droppedimage

The basic idea is that with many wide-angle video cameras capturing the night sky, and a little bit of image processing, identifying meteoroids in the night sky should be fairly easy. When enough cameras capture the same meteoroid, one can use triangulation to back out the path of the meteoroid in 3D, estimate its mass, and more. It’s surprising how many there are to see on any given night.

You can watch the videos of a meteoroid event from any camera, watch the cameras live, and even download the meteoroid’s orbital parameters. We’re bookmarking this website for the next big meteor shower.

cameraThe work is apparently based on [Rob Weryk]’s ASGARD system, for which the code is unfortunately unavailable. But it shouldn’t be all that hard to hack something together with a single-board computer, camera, and OpenCV. NASA’s project is limited to the US so far, but we wonder how much more data could be collected with a network of cameras all over the globe. So which ones of you are going to take up our challenge? Build your own version and let us know about it!

Between this project and the Radio Meteor Zoo, we’re surprised at how much public information there is out there about the rocky balls of fire that rain down on us every night, and will eventually be responsible for our extinction. At least we can be sure we’ll get it on film.

30 thoughts on “NASA Knows Where The Meteors Are

  1. Whenever I see UFO hunters explaining how some place is like a UFO highway, I think ‘Why don’t you set up an array of dozens of GoPros and film all night, then review the footage?’. I would be easy to do and wouldn’t cost more than a couple grand.

  2. The problem with using standard CCDs is that they are not well suited to the job and a custom chip with 4 or more sensors per pixel can also do spectral identification of the meteor type. This also helps to separate the natural fireballs from space junk etc.. However there may be a way to fudge it with a standard camera CCD chip in tandem with a scanner CCD chip and the right optics, because you can to a spectral reading of the whole sky and correlate changes in that with the events in the meteor detection data. Obviously simultaneous events can complicate things, but not always.

  3. …” and will eventually be responsible for our extinction.

    Have faith in the truth. The truth says life is most important in life. “…will…” should be replaced with may.

  4. I have been using my own DIY allsky camera for years, its made from a Samsung SUB-2000 security camera and Fujifilm KTL-2.8-8VA lens inside a Monoprice ML-606HB outdoor camera housing pointing up to a clearing in the trees, you need to jb-weld on the inside all around the edge of the front glass window of the ML-606HB otherwise the glue supporting the glass fails in about a year and the glass window just falls out exposing your camera to the weather, you also need some software to record the video from the camera, I use “Blue Iris” software, here is an old link to one of my forum posts about this:

    http://www.cloudynights.com/topic/438776-2-samsung-cams-1-for-telescope-1-for-allsky-cam/

Leave a Reply

Please be kind and respectful to help make the comments section excellent. (Comment Policy)

This site uses Akismet to reduce spam. Learn how your comment data is processed.