Mood Lamp Also Warns of Nuclear Catastrophe

[Michal Zalewski] has radiation on the brain. Why else would he gut a perfectly-horrible floor lamp, rebuild the entire thing with high-power RGB LEDs, and then drive it with a microcontroller that is connected up to a Geiger-Müller tube? Oh right, because it also looks very cool, and Geiger tubes are awesome.

If you’ve been putting off your own Geiger tube project, and we know you have, [Michal]’s detailed explanation of the driver circuit and building one from scratch should help get you off the couch. Since a Geiger tube needs 400 volts DC, some precautions are necessary here, and [Michal] builds a relatively safe inverter and also details a relatively safe way to test it.

The result is a nice piece of decor that simultaneously warns you of a nuclear disaster by flashing lights like crazy, or (hopefully) just makes a nice conversation piece. This is one of the cooler Geiger tube hacks we’ve seen since [Robert Hart] connected up eighteen Geiger tubes, and used them to detect the direction of incoming cosmic rays and use that to compose random music (YouTube, embedded below).

[Michal] is also author of the most excellent Guerrilla Guide to CNC Machining and keeps good tabs on his background radiation.

Continue reading “Mood Lamp Also Warns of Nuclear Catastrophe”

Dartboard Watches Your Throw; Catches Perfect Bullseyes

Some people really put a lot of effort into rigging the system. Why spend years practicing a skill and honing your technique to hit a perfect bullseye in darts when you can spend the time building an incredibly complicated auto-bullseye dartboard that’ll do it for you?

In fairness, what [Mark Rober] started three years ago seemed like a pretty simple task. He wanted to build a rig to move the dartboard’s bullseye to meet the predicted impact of any throw. Seems simple, but it turns out to be rather difficult, especially when you choose to roll your own motion capture system.

That system, built around the Nvidia Jetson TX1, never quite gelled, a fact which unfortunately burned through the first two years of the project. [Mark] eventually turned to the not inexpensive Vicon Vantage motion capture system with six IR cameras. A retroreflector on the non-regulation dart is tracked by the system and the resulting XY data is fed into MATLAB to calculate the parabolic path of the dart. An XY-gantry using six steppers quickly shifts the board so the bullseye is in the right place to catch the incoming dart.

It’s a huge amount of work and a lot of money to spend, but the group down at the local bar seemed to enjoy it. We wonder if it can be simplified, though. Perhaps tracking just the thrower’s motions with an IMU-based motion capture system and extrapolating the impact point would work.

Continue reading “Dartboard Watches Your Throw; Catches Perfect Bullseyes”

Creepy Speaking Neural Networks

Tech artist [Alexander Reben] has shared some work in progress with us. It’s a neural network trained on various famous peoples’ speech (YouTube, embedded below). [Alexander]’s artistic goal is to capture the “soul” of a person’s voice, in much the same way as death masks of centuries past. Of course, listening to [Alexander]’s Rob Boss is no substitute for actually watching an old Bob Ross tape — indeed it never even manages to say “happy little trees” — but it is certainly recognizable as the man himself, and now we can generate an infinite amount of his patter.

Behind the scenes, he’s using WaveNet to train the networks. Basically, the algorithm splits up an audio stream into chunks and tries to predict the next chunk based on the previous state. Some pre-editing of the training audio data was necessary — removing the laughter and applause from the Colbert track for instance — but it was basically just plugged right in.

The network seems to over-emphasize sibilants; we’ve never heard Barack Obama hiss quite like that in real life. Feeding noise into machines that are set up as pattern-recognizers tends to push them to the limits. But in keeping with the name of this series of projects, the “unreasonable humanity of algorithms”, it does pretty well.

He’s also done the same thing with multiple speakers (also YouTube), in this case 110 people with different genders and accents. The variation across people leads to a smoother, more human sound, but it’s also not clearly anyone in particular. It’s meant to be continuously running out of a speaker inside a sculpture’s mouth. We’re a bit creeped out, in a good way.

We’ve covered some of [Alexander]’s work before, from the wince-inducing “Robot Bites Man” to the intellectual-conceptual “All Prior Art“. Keep it coming, [Alexander]!

Continue reading “Creepy Speaking Neural Networks”

Tiny Electric Motor Runs on Power from an LED

If you were not aware, LEDs can also work in reverse: they deliver tiny amounts of current, in the microamp range, when illuminated. If you look on YouTube you can find several videos of solar panels built with arrays of LEDs, but powering an electric motor with a single 3 mm LED is something that we’ve never seen before. [Slider2732] built a small electric motor that happily runs from a green LED in sunlight.

The motor uses four coils of 1,000 ohms each. Using coils with many turns of very fine wire helps to draw less current while keeping an appropriate magnetic field for the motor to run. To keep friction at a minimum, the rotor uses a needle that hangs from a magnet. Four neodymium magnets around the rotor are periodically pushed by the coils, generating rotation. A simple two-transistor circuit takes care of the synchronization and yes, the motor does run on the four microamps provided by the LED, and runs pretty well.

Building motors is definitely an enjoyable activity, these small pulse motors can be built in just a couple of hours. You can use coils with just a few tens of turns which are much more easy to make but of course you will need something more than four microamps! The nice part of making an ultralow current motor like this is that it can run for a very long time on a tiny battery or even a capacitor, we invite you to try building one.

Continue reading “Tiny Electric Motor Runs on Power from an LED”

Scratch-built Camera Gimbal for Photographer with Cerebral Palsy

We so often hack for hacking’s sake, undertaking projects as a solitary pursuit simply for the challenge. So it’s nice to see hacking skills going to good use and helping someone out. Such was the case with this low-cost two-axis handheld camera gimbal intended to help a budding photographer with a motion disorder.

When [Tadej Strah] joined his school photography club, a fellow member who happens to have cerebral palsy needed help steadying cameras for clean shots. So rather than shell out a lot of money for a commercial gimbal, [Tadej] decided to build one for his friend. A few scraps of aluminum bar stock were bent into the gimbal frames and camera mount. Two hobby servos take care of the pitch and roll axes, controlled by an Arduino talking to an MPU-6050. Mounted to a handle from an angle grinder with the battery and electronics mounted below, the gimbal looks well-balanced and does a good job of keeping the camera level.

Hats off to [Tadej] for pitching in and solving a real world problem with his skills. We like to see people helping others directly, whether it’s building a gyroscopic spoon for Parkinson’s sufferers or vision enhancement for a nearly blind adventurer.

Continue reading “Scratch-built Camera Gimbal for Photographer with Cerebral Palsy”

Light-Painting Robot Turns any Floor into Art

Is [SpongeBob SquarePants] art? Opinions will differ, but there’s little doubt about how cool it is to render a pixel-mapped time-lapse portrait of Bikini Bottom’s most famous native son with a roving light painting robot.

Inspired by the recent trend of long exposure pictures of light-adorned Roombas in darkened rooms, [Hacker House] decided to go one step beyond and make a lighted robot with less random navigational tendencies. A 3D-printed frame and wheels carries a pair of steppers and a Raspberry Pi. An 8×8 Neopixel matrix on top provides the light. The software is capable of rendering both simple vector images and rastering across a large surface to produce full-color images. You’ll notice the careful coordination between movement and light in the video below, as well as the impressive turn-on-a-dime performance of the rover, both of which make the images produced so precise.

We’ve covered a lot of light-painting videos before, including jiggering a 3D-printer and using a hanging plotter to paint. But we haven’t seen a light-painter with an essentially unlimited canvas before. We’d also love to see what two or more of these little fellows could accomplish working together.

Continue reading “Light-Painting Robot Turns any Floor into Art”

Can You Bull’s-Eye A Womprat With A Bean Bag?

As it turns out, a simple game of cornhole — aka, bean bag toss — can have some pretty high stakes. If you lose a round playing on this Death Star trench run cornhole table, the Rebel Alliance may pay the price.

Designed and built by [Hyperdynelabs], the table is set up to play a number of audio clips from the movie with accompanying light effects. Details on how it was made are scant, but there are at least three strips of RGBW LEDs — two that run the length of the board and one inside the exhaust port — an Arduino(presumably), and some sort of wireless connectivity to receive commands.

But it’s not just the electronic effects that make this one great. The physical build itself really nails the Death Star trench run look. This is thanks to artful use of greebles — it’s the same technique which can turn a Nissan into a Z-Wing.

When you make a shot worthy of Luke Skywalker, you’re treated to an impressive lightshow and the sound of the Death Star exploding. For a particularly bad turn, you can have the table charge up and make a show of firing back, or taunt the player if their shot goes wide.

Continue reading “Can You Bull’s-Eye A Womprat With A Bean Bag?”