Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The Copycat Keyboard

This is Crater75, an almost completely from-scratch row-staggered wireless split board that [United_Parfait_6383] has been working on for a few months. Everything but the keycaps and switches is DIY.

The Crater75 split keyboard, which features OLEDs on the Function row.
Image by [United_Parfait_6383] via reddit
As cool as a keyboard full of screens might seem, can you imagine what it would be like to type at speed on a sea of slick surfaces? Not very nice, I’m thinking. But having them solely on the Function row seems like the perfect compromise. Here, the Function row keys interact with foreground applications, and change with whatever has focus. For the curious, those are 0.42″ OLEDs from Ali with a resolution of 72×40.

I’m not sure what’s going on internally, but the two sides connect with magnets, and either side’s USB-C can be used to charge the board. Both sides have a 2100 mAh Li-Po battery, and the average current of the OLED displays is low enough that the board can run for months on a single charge.

The switches are Gateron low-profiles and are wearing keycaps recycled from a Keychron, which add to the professional finish. Speaking of, the enclosures were manufactured by JLC3DP using the Nylon Multi-Jet Fusion process, but [United_Parfait_6383] says the left side feels too light, so the next revision will likely be CNC’d aluminium. Be sure to check out this short video of Crater75 in action.

Continue reading “Keebin’ With Kristina: The One With The Copycat Keyboard”

A Trackball So Good You Can’t Buy It

The projects we feature on Hackaday are built to all standards, and we’d have to admit that things have left our own benches as bundles of wire and tape. Sometimes we see projects built to such a high standard that we’re shocked that they aren’t a high-end manufactured product, such as [jfedor2]’s two-ball trackball project. It combines a pair of billiard balls and a couple of buttons with a beautifully-designed 3D-printed case that looks for all the world as though it came from a premium peripheral brand.

Inside are a pair of PMW3360 optical sensors on PCBs mounted with a view into the billiard ball sockets, and for which the brains come courtesy of an RP2040 microcontroller. There are five PCBs in all, each having a set of purpose-built stand-offs to hold it. The result appears to be about as good a trackball as you’d hope to buy, except of course that you can’t. All the files to make your own are in the GitHub repository though, so all is not lost.

Over the years we’ve brought you a variety of trackball designs, including at least one other build using a billiard ball.