Volume Controller Rejects Skeumorphism, Embraces The Physical

The volume slider on our virtual desktops is a skeuomorphic callback to the volume sliders on professional audio equipment on actual, physical desktops. [Maker Vibe] decided that this skeuomorphism was so last century, and made himself a physical audio control box for his PC.

Since he has three audio outputs he needs to consider, the peripheral he creates could conceivably be called a fader. It certainly has that look, anyway: each output is controlled by a volume slider — connected to a linear potentiometer — and a mute button. Seeing a linear potentiometer used for volume control threw us for a second, until we remembered this was for the computer’s volume control, not an actual volume control circuit. The computer’s volume slider already does the logarithmic conversion. A Seeed Studio Xiao ESP32S3 lives at the heart of this thing, emulating a Bluetooth gamepad using a library by LemmingDev. A trio of LEDs round out the electronics to provide an indicator for which audio channels are muted or active.

Those Bluetooth signals are interpreted by a Python script feeding a software called Voicmeeter Banana, because [Maker Vibe] uses Windows, and Redmond’s finest operating system doesn’t expose audio controls in an easily-accessible way. Voicmeeter Banana (and its attendant Python script) takes care of telling Windows what to do. 

The whole setup lives on [Maker Vibe]’s desk in a handsome 3D printed box. He used a Circuit vinyl cutter to cut out masks so he could airbrush different colours onto the print after sanding down the layer lines. That’s another one for the archive of how to make front panels.

If volume sliders aren’t doing it for you, perhaps you’d prefer to control your audio with a conductor’s baton. 

Continue reading “Volume Controller Rejects Skeumorphism, Embraces The Physical”

Smallest Gaming Mouse Has Crazy Fast Polling Rate And Resolution

[juskim] wanted to build a tiny mouse, but it couldn’t just be any mouse. It had to be a high-tech gaming mouse that could compete with the best on raw performance. The results are impressive, even if the final build is perhaps less than ideal for pro-level gameplay.

The build riffs on an earlier build from [juskim] that used little more than a PCB and a 3D-printed housing to make a barebones skeleton mouse. However, this one ups the sophistication level. At the heart of the build is the nRF54L15 microcontroller, which is paired with a PAW3395 mouse sensor which is commonly used in high-end gaming mice. It offers resolution up to 26K DPI for accurate tracking, speeds up to 650 ips, and 8 kHz sampling rates. Long story short, if you want fine twitch control, this is the sensor you’re looking for. The sensor and microcontroller are laced together on a custom PCB with a couple of buttons, a battery, and a charging circuit, and installed in a barebones 3D-printed housing to make the final build as small as possible.

The only real thing letting the design down is the mouse’s key feature—the size. There’s very little body to grab on to and it’s hard to imagine being able to play most fast-paced games at a high level with such a tiny device. Nevertheless, the specs are hardcore and capable, even if the enclosure isn’t.

[juskim] loves building tiny peripherals; we’ve featured his fine work before, too. Video after the break.

Continue reading “Smallest Gaming Mouse Has Crazy Fast Polling Rate And Resolution”

Ploppy knob

Open-Source Knob Packed With Precision

The world of custom mechanical keyboards is vibrant, with new designs emerging weekly. However, keyboards are just one way we interact with computers. Ploopy, an open-source hardware company, focuses on innovative user interface devices. Recently, [Colin] from Ploopy introduced their latest creation: the Ploopy Knob, a compact and thoughtfully designed control device.

At first glance, the Ploopy Knob’s low-profile design may seem unassuming. Housed in a 3D-printed enclosure roughly the size of a large wristwatch, it contains a custom PCB powered by a USB-C connection. At its core, an RP2040 chip runs QMK firmware, enabling users to easily customize the knob’s functions.

The knob’s smooth rotation is achieved through a 6705ZZ bearing, which connects the top and bottom halves and spans nearly the device’s full width to eliminate wobble. Unlike traditional designs, the Ploopy Knob uses no mechanical encoder or potentiometer shaft. Instead, an AS5600 magnetic encoder detects movement with remarkable precision. This 12-bit rotary encoder can sense rotations as fine as 0.088 degrees, offering 4096 distinct positions for highly accurate control.

True to Ploopy’s philosophy, the Knob is fully open-source. On its GitHub Page, you’ll find everything from 3D-printed case files to RP2040 firmware, along with detailed guides for assembly and programming. This transparency empowers users to modify and build their own versions. Thanks to [Colin] for sharing this innovative device—we’re excited to see more open-source hardware from Ploopy. For those curious about other unique human-machine interfaces, check out our coverage of similar projects. Ploopy also has designs for trackballs (jump up a level on GitHub and you’ll see they have many interesting designs).

Animal Crossing keyboard banner

Making GameCube Keyboard Controller Work With Animal Crossing

[Hunter Irving] is a talented hacker with a wicked sense of humor, and he has written in to let us know about his latest project which is to make a GameCube keyboard controller work with Animal Crossing.

This project began simply enough but got very complicated in short order. Initially the goal was to get the GameCube keyboard controller integrated with the game Animal Crossing. The GameCube keyboard controller is a genuine part manufactured and sold by Nintendo but the game Animal Crossing isn’t compatible with this controller. Rather, Animal Crossing has an on-screen keyboard which players can use with a standard controller. [Hunter] found this frustrating to use so he created an adapter which would intercept the keyboard controller protocol and replace it with equivalent “keypresses” from an emulated standard controller.

Continue reading “Making GameCube Keyboard Controller Work With Animal Crossing”

Split Keyboard Uses No PCB

When [daniely101] wanted a split keyboard, he decided to build his own. It wound up costing $25 to create a wireless board with no custom PCB required. Each half has its own microcontroller, and the whole thing connects via Bluetooth. While we don’t mind making a PCB, we can appreciate that you could change your mind easily with this wiring scheme.

The 3D printed case holds the keys, and then it is just a matter of carefully soldering the keys to the microcontrollers. Of course, each side also has to have its own battery. The ZMK firmware is split in half, one part for each side of the keyboard. The nRF52840 CPUs have plenty of wireless connectivity. The keys are set in rows and columns, so the amount of soldering back to the controller is manageable.

While we applaud the wireless design, it does seem odd that you have to charge both halves and turn them on and off separately. But that’s the nice thing about a design like this — you could modify the design to not have a split. Or, you could allow one flexible wire pair to run across for power. Of course, you could modify the layout, including adding or deleting keys.

You might consider adding a pointing device. At least you don’t have to pull out a saw.

Continue reading “Split Keyboard Uses No PCB”

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The Gaming Typewriter

Can you teach an old typewriter new tricks? You can, at least if you’re [maniek-86]. And a word to all you typewriter fanatics out there — this Optima SP 26 was beyond repair, lacking several internal parts.

A sleek typewriter with a monitor and a mouse.
Image by [maniek-86] via reddit
But the fully available keyboard was a great start for a gaming typewriter. So [maniek-86] crammed in some parts that were just laying around unused, starting with a micro-ATX motherboard.

But let’s talk about the keyboard. It has a standard matrix, which [maniek-86] hooked up to an Arduino Lenoardo. Although the keyboard has a Polish layout, [maniek-86] remapped it to English-US layout.

As you’ll see in the photos of the internals, this whole operation required careful Tetris-ing of the components to avoid overheating and ensure the cover could go back on.

The graphics were a bit of a challenge, since the motherboard had no PCI-E x16 slot. To address this, [maniek-86] used a riser cable, probably connected to a PCI-E x1 slot with an adapter, in order to use an NVIDIA GT 635 GPU. It can’t run AAA games at 4k, but you can bet that it’ll play Minecraft, Fortnite, or Dota 2 just fine.

Continue reading “Keebin’ With Kristina: The One With The Gaming Typewriter”

Adaptive Keyboards & Writing Technologies For One-Handed Users

After having been involved in an accident, [Kurt Kohlstedt] suffered peripheral neuropathy due to severe damage to his right brachial plexus — the network of nerves that ultimately control the shoulder, arm, and hand. This resulted in numbness and paralysis in his right shoulder and arm, with the prognosis being a partial recovery at best. As a writer, this meant facing the most visceral fear possible of writing long-form content no longer being possible. While searching for solutions, [Kurt] looked at various options, including speech-to-text (STT), before focusing on single-handed keyboard options. Continue reading “Adaptive Keyboards & Writing Technologies For One-Handed Users”