Hazardous Dollhouse Teaches Fire Safety

Fire safety is drilled into us from a young age. And for good reason, too, because fire hazards are everywhere in the average home. Even a small fire can turn devastatingly dangerous in a matter of minutes. But how do you get kids to really pay attention to scary (and often boring) adult concepts? You can teach a kid to stop, drop, and roll until you’re blue in the face and still might not drive home the importance of fire prevention. Subjects like this call for child-sized visual aids that ignite imaginations.

That’s exactly what firefighters in Poznań, Poland did in collaboration with mlabs, a local software company. They built a mobile, interactive fire safety education tool that simulates common household fire hazards in great detail (translated). This is easily the most tricked-out dollhouse we’ve ever seen. The many different hazard scenarios are controlled via touchscreen using a custom-built application. At the tap of a button, the house becomes a total death trap. The lamp-lit hazards glow realistically and with varied intensity, and there is actual smoke coming out of them that triggers smoke detectors. Cameras embedded throughout the house provide a first-person view of the terror on a nearby monitor.

Almost no room is safe for the figurine family that lives inside this intricately detailed 1:12 scale dwelling. Dad’s in the kitchen standing idly by while food scorches on the stove. Grandma’s sitting on her bed upstairs, her forgotten cigarette burning a hole in the duvet. Daughter is overloading the electrical outlets in her bedroom with all her gizmos. Smoldering coals have spilled out from the toppled stove in the utility room.

This isn’t the first smart dollhouse we’ve seen, but it’s probably the most intriguing. The fire safety dollhouse was on display this week at POL-EKO-SYSTEM, an annual environmental fair in Poznań. Nowhere near Poland? Check out the video after the break.

Continue reading “Hazardous Dollhouse Teaches Fire Safety”

Pop Goes the Haunted Jack-in-the-Box

Is Halloween sneaking up on you, too?  It’s less than two weeks away, but there is still plenty of time to build something that will scare the pants off trick-or-treaters and party guests alike. This year, Hackaday regular [Sean Hodgins] hacked his favorite holiday by taking something that ships with a base level of scariness and making it autonomous. What could be more frightening than a haunted toy?

The (decades-old) jack-in-the-box mechanism is simple. Turning the crank operates a mechanical music box that plays the traditional “Pop Goes the Weasel”. When the music box hits the high note, a jutting piece of plastic on the barrel of music box disturbs the other end of the latch, which frees the scary clown inside. [Sean] used a 100:1 DC motor to turn the crank from the inside, and a Pi camera to detect victims in the vicinity. Once the camera locks on to a face, the box cranks itself and eventually ejects the jester. Since most of the space inside is already taken up by the spring, [Sean] housed the electronics in a custom 3D-printed base with a hole cut out for the camera’s eye.

Many modifications are possible with a project like this. [Sean] is now in complete control of the latch operation, so he could make the clown pop appear instantly, or randomly, or sometimes not at all. Check out [Sean]’s entertaining build video after the break.

Want to make your own fright machine from scratch? We’ve got all the inspiration you need, from tabletop to trash can-sized monsters. Continue reading “Pop Goes the Haunted Jack-in-the-Box”

Hassle-Free Classical Conditioning for Honey Bees

When you’re sick or have a headache, you tend to see things a bit differently. An ill-feeling human will display a cognitive bias and expect the world to punish them further. The same is true of honey bees. They are intelligent creatures that exhibit a variety of life skills, such as decision-making and learning.

It was proven back in 2011 that honey bees will make more pessimistic decisions after being shaken in a way that simulates an attack by varroa destructor mites. The bees were trained to associate a reward of sugar-water with a particular odor and to associate foul-tasting punishment water with another odor—that of formic acid, a common treatment against varroa mites. When a third stimulus created by mixing the two odors was presented, the experimenters found that the aggravated bees were more likely to expect the bad odor. Sure enough, they kept their tongues in their mouths when they smelled the third odor. All the bees that weren’t shaken looked forward to sucking down a bit of sugar-water.

So, how does one judge a honey bee’s response? Whenever their antennae come in contact with something appetizing, they stick out their proboscis involuntarily to have a taste. This is called proboscis extension reflex (PER), and it’s the ingrained, day-one behavior that leads them to suck the nectar out of flower blossoms and regurgitate it to make honey.

[LJohann] is a behavioral biologist who wanted to test the effects of varroa mite treatment on bee-havior by itself, without agitating the bees. He built a testing apparatus to pump odors toward bees and judge their response which is shown in a few brief demo videos after the break. This device enables [LJohann] to restrain a bee, tantalize its antennae with sucrose, and pump a stimulus odor at its face on the cue of an LED and piezo buzzer. A fan mounted behind the bee helps clear the air of the previous scents. We especially like the use of a servo to swing the tube in and out of the bee’s face between tests.

[LJohann] and his colleagues concluded that the varroa mite treatment by itself does not make the bees pessimistic. This is great news for concerned apiarists who might be skeptical about using formic acid in the fight against the honey bee’s worst predator. Check out the brief demo videos after the break.

Hackaday has long been abuzz about bees whether they produce honey or not. We’ve covered many kinds of sweet projects like intelligent hives, remote hive weight monitoring, and man-made bee nest alternatives. Continue reading “Hassle-Free Classical Conditioning for Honey Bees”

Zenith’s New Watch Oscillator is Making Waves

Swiss watchmaker Zenith has created what many mechanical watch fanatics are calling the biggest improvement to mechanical watch accuracy since the invention of the balance spring in 1675. The Caliber ZO 342 is a new type of harmonic oscillator that runs at 15 Hz, which is almost four times the speed of most watches. The coolest part? It’s fabricated out of silicon using Deep Reactive Ion Etching (DRIE), and it single-handedly replaces about 30 components.

Before explaining how Zenith’s oscillator works and why this is such exciting news, it’s important to understand why the balance spring and balance wheel were such a big step forward when they were the newest thing. The system was invented by [Christiaan Huygens], a Dutch mathematician and scientist. [Huygens] had previously invented the pendulum clock, which is widely accepted as the first precision timepiece.

Continue reading “Zenith’s New Watch Oscillator is Making Waves”

Project Loon Will Float LTE to Puerto Rico

Some of the biggest names in technology have offered their help in rebuilding Puerto Rico’s infrastructure. The newest name on the list? The X division of Alphabet, who want to help fill the huge communications gap using Project Loon, their high-altitude balloon network. It looks like X is going to get their wish, as they have just been granted license from the FCC to deploy LTE cell coverage to both Puerto Rico and the US Virgin Islands.

The plan is to launch 30 balloons that will act as a network of floating cell towers to radiate an LTE signal originating from the ground. This coverage would be a great boon to a devastated communications infrastructure, but it won’t be a cakewalk to implement. Some handsets of both major persuasions will require a temporary over-the-air update before they can use Project Loon’s network. For phones that can’t operate on Band 8, it won’t work at all. Even so, it’s a great start.

Now you would think that an emergency communications restoration plan like this would be met by all parties with open arms and a circle of pats on the back, but this solution requires a lot of cooperation. One of the major hurdles was to secure spectrum rights from some if not all of the incumbent wireless carriers. Miraculously, eight of them have agreed to hand over their bandwidth. Another issue is that the FCC license is only good for six months, although they would probably entertain an extension given the circumstances. Finally, the dual ownership of the Virgin Islands makes the situation even more complicated, as X must agree not to infringe upon the wireless coverage footprint of the British Virgin Islands.

Via r/Futurology

Opto-Isolating Automatic Cat Feeder Problems

When you buy an off-the-shelf automatic cat feeder, you might well expect it to do the one thing it’s supposed to do. Feed the cat. Well, at least as long as you do your part by keeping it filled with food nuggets. [Stephen] had the sneaking suspicion that his feeder was slacking occasionally, and set out to prove this theory.

He had a few ideas for approaching the investigation. One was to set up a web cam, but that proved unreliable. Another idea was to log the weight changes of the food bowl. This seemed like a possibility because the reading would change dramatically whenever it was filled. The method he settled on is a good one, too — monitor the motor’s activity and look for holes. After all, the motor only runs when it’s feeding time.

The design is based around a smart door/window alarm, which is little more than a reed switch with networking capabilities. [Stephen] wired up an opto-isolator so that when the motor runs, the reed switch is triggered but not fried, and the event gets logged in Google Sheets. Any missed meals are weeded out with a script that alerts [Stephen] via email and text that his poor kitty is hungry.

If [Stephen] ever wants to build his own cat feeder, we have plenty of designs for inspiration.

Hackaday Prize Entry: Clunke Button Powers Accessibility

An AT button is a device that helps people with all kinds of physical disabilities to interact with their world. There isn’t much to them,  just a switch wired up to a 3.5mm mono plug or jack, but the switch is installed in a large button housing that’s easy to operate.

These buttons can be used with any appliance or toy that can be adapted for mono input. They’re a simple piece of technology that makes a world of difference, but for some reason, they cost around $65 each. Because of this, people make their own simple switches, but these aren’t usually sturdy or long-lasting. [Christopher] thinks they should cost way less than that and set out to make buttons for about $10 in materials. Aside from the printed files, all you really need to make a Clunke button is one Cherry MX in your favorite shade of blue, blue, or blue, and either a 3.5mm mono jack or plug, depending on preference.

[Christopher] and his team devised the Clunke Button in collaboration with the local United Cerebral Palsy chapter as part of their senior design project. When it came time to present the project, they wanted to find a way to be able to pass a Clunke button around the audience and have it do something when pressed. They made an interactive ticker by adding an ESP-01 and a battery. [Christopher] has since taken over the project and continues to improve the design as he progresses through the Prize finals. Code for the ticker is available on GitHub, and the button STL files are on Thingiverse.