Pushing 802.11ah To The Extreme With Drones

It might come as a surprise to some that IEEE, the Institute for Electrical and Electronics Engineers, does more than send out mailers asking people to renew their memberships. In fact, they also maintain various electrical standards across a wide range of disciplines, but perhaps the one most of us interact with the most is the 802.11 standard which outlines WiFi. There have been many revisions over the years to improve throughput but the 802.11ah standard actually looks at decreasing throughput in favor of extremely increased range. Just how far you can communicate using this standard seems to depend on how many drones you have.

802.11ah, otherwise known as Wi-Fi HaLow, operates in the sub-gigahertz range which is part of why it has the capability of operating over longer distances. But [Aaron] is extending that distance even further by adding a pair of T-Halow devices, one in client mode and the other in AP (access point) mode, on a drone. The signal then hops from one laptop to a drone, then out to another drone with a similar setup, and then finally down to a second laptop. In theory this “Dragon Bridge” could allow devices to communicate as far as the drone bridge will allow, and indeed [Aaron] has plans for future revisions to include more powerful hardware which will allow even greater distances to be reached.

While there were a few bugs to work out initially, eventually he was able to get almost two kilometers of distance across six devices and two drones. Something like this might be useful for a distributed network of IoT devices that are just outside the range of a normal access point. The Dragon Bridge borrowed its name from DragonOS, a Linux distribution built by [Aaron] with a wide assortment of software-defined radio tools available out of the box. He’s even put in on the Steam Deck to test out long-distance WiFi.

Continue reading “Pushing 802.11ah To The Extreme With Drones”

So What’s All This HaLow Long-Range WiFi About Then?

We’re all used to wireless networking, but if there’s one thing the ubiquitous WiFi on 2.4 or 5 GHz lacks, it’s range. Inside buildings, it will be stopped in its tracks by anything more than a mediocre wall, and outside, it can be difficult to connect at any useful rate more than a few tens of metres away without resorting to directional antennas and hope. Technologies such as LoRa provide a much longer range at the expense of minuscule bandwidth, but beyond that, there has been little joy. As [Andreas Spiess] points out in a recent video though, this is about to change, as devices using the so-called HaLow or IEEE 802.11ah protocol are starting to edge into the realm of affordability.

Perhaps surprisingly, he finds the 5 GHz variant to be best over a 1km test with a far higher bandwidth. However, we’d say that his use of directional antennas is something of a cheat. Where it does come into its own in his tests, though, is through masonry, with far better penetration across floors of a building. We think that this will translate to better outdoor performance when the line of sight is obstructed.

There’s one more thing he brings to our attention, which seasoned users of LoRA may already be aware of. These lower frequency allocations are different between the USA and Europe, so should you order one for yourself, it would make sense to ensure you have the appropriate model for your continent. Otherwise, we look forward to more HaLow devices appearing and the price falling even further because we think this will lead to some good work in future projects.

Continue reading “So What’s All This HaLow Long-Range WiFi About Then?”