Music-synced Christmas Light Suit

Ah, the end of the 4th financial quarter – the magical time of increased sales, being at work the entire time the sun is up, and holiday parties. For [Andy] at National Instruments, though, things don’t seem too bad. He built a neat Christmas light suit to entertain everyone with his brilliant persona.

[Andy] always loves great Christmas light displays (he even blogs about them), so he figured a wearable light display synchronized with music would be very doable. The build is controlled with LabVIEW to convert .WAV files to power levels and frequency bands. This info is then piped into the Arduino that controls the lights.

[Andy] actually made two light suits, one for him and one for his friend [Richard]. Both guys have two light-up Christmas staffs to wield light mage powers on their coworkers. The lighsuits are controlled by Arduino/Xbee setups – one each for each suit and staff. The result is phenomenal, and should really get everyone in the holiday spirit.

Monster Chess

Over 100,000 Lego pieces, 4 people a year to create, and a 12 foot by 12 foot chess board make this the largest most awesome Lego hack we’ve ever seen. Take that Lego Printer.

For a mere $30,000 you too can have such a setup. Not a lot of information is out yet, but we do know all the pieces are remote controlled via a PC with LabVIEW and a total of 38 NXT controllers are used. Oh, and of course you can see it live at the 2010 Brickworld. Check out a video of a replayed game after the jump.

[via Geekologie]

Continue reading “Monster Chess”

Easy Data Input For LabVIEW

[youtube http://www.youtube.com/watch?v=9cKBdn4uHyY%5D

Props go to [Michael Nash] for establishing an interface between National Instrument’s labVIEW and an Arduino (an example video using a potentiometer is above). Personally, from the one time we were forced to use labVIEW, we hated every second of it.

One reason it’s so terrible, is the Data Acquisition Modules cost well into the hundreds of dollars, yet the documentation and help resources are very scarce. By using an Arduino instead of the modules, the price and difficulty decrease a considerable amount. Which begs the question why has it taken so long to get a decent (and so simple) of a setup working?