LEGO Row Boat Is The Poolside Companion You Didn’t Know You Needed

Maybe it’s the upbeat music, or the views of a placid lake at sunset, or perhaps it’s just seeing those little plastic rods pumping away with all their might. Whatever the reason may be, the video [Vimal Patel] posted of his little remote controlled LEGO row boat cruising around on the open water is sure to put a smile on the face of even the most jaded hacker.

[Vimal] tells us that his creation is made up of over 140 unmodified LEGO parts, and is controlled over Bluetooth which connects to an app on his phone. While we would like to see some more detail on the reciprocating module he came up with to drive the boat’s paddles, we have to admit that the images he provided in his flickr album for the project are impeccable overall. If the toy boat game doesn’t work out for [Vimal], we think he definitely has what it takes to get into the advertising department for a car manufacturer.

[Vimal] was even kind enough to provide a LEGO Digital Designer file for the project, which in the world of little rainbow colored blocks is akin to releasing the source code, so you can build up your own fleet before next summer.

It’s worth noting that [Vimal] is something of a virtuoso in the world of modular building blocks, and no stranger here at Hackaday. His self lacing shoe impressed earlier this year, and this isn’t even his first LEGO watercraft.

All he has to do now to reach the true pinnacle of LEGO construction is to start building with giant versions of everyone’s favorite block.

Continue reading “LEGO Row Boat Is The Poolside Companion You Didn’t Know You Needed”

LEGO-compatible Electronics Kits Everywhere!

Within the last few years, a lot of companies have started with the aim to disrupt the educational electronics industry using their LEGO-compatible sets. Now they’re ubiquitous, and fighting each other for their slice of space in your child’s box of bricks. What’s going on here?

Raison D’Être

The main reason for LEGO-compatibility is familiarity. Parents and children get LEGO. They have used it. They already have a bunch. When it comes to leveling up and learning about electronics, it makes sense to do that by adding on to a thing they already know and understand, and it means they can continue to play with and get more use from their existing sets. The parent choosing between something that’s LEGO-compatible and a completely separate ecosystem like littleBits (or Capsela) sees having to set aside all the LEGO and buy all new plastic parts and learn the new ecosystem, which is a significant re-investment. littleBits eventually caught on and started offering adapter plates, and that fact demonstrates how much demand there is to stick with the studs.

Continue reading “LEGO-compatible Electronics Kits Everywhere!”

Hovering Questions About Magnetic Levitation

Who doesn’t love magnets? They’re functional, mysterious, and at the heart of nearly every electric motor. They can make objects appear to defy gravity or move on their own. If you’re like us, when you first started grappling with the refrigerator magnets, you tried to make one hover motionlessly over another. We tried to position one magnet over another by pitting their repellent forces against each other but [K&J Magnetics] explains why this will never work and how levitation can be done with electromagnets. (YouTube, embedded below.)

In the video, there is a quick demonstration of their levitation rig and a brief explanation with some handy oscilloscope readings to show what’s happening on the control side. The most valuable part, is the explanation in the article where it walks us through the process, starting with the reason permanent magnets can’t be used which leads into why electromagnets can be successful.

[K&J Magnetics]’s posts about magnets are informative and well-written. They have a rich mix of high-level subjects without diluting them by glossing over the important parts. Of course, as a retailer, they want to sell their magnets but the knowledge they share can be used anywhere, possibly even the magnets you have in your home.

Simpler levitators can be built with a single electromagnet to get you on the fast-track to building your own levitation rig. Remember in the first paragraph when we said ‘nearly’ every electric motor used magnets, piezoelectric motors spin without magnets.

Continue reading “Hovering Questions About Magnetic Levitation”

Rocking Playmobil Wedding

Many of us have put our making/hacking/building skills to use as a favor for our friends and family. [Boris Werner] is no different, he set about creating a music festival stage with Playmobil figures and parts for a couple of friends who were getting married. The miniature performers are 1/24 scale models of the forming family. The bride and groom are on guitar and vocals while junior drums.

Turning children’s toys into a wedding-worthy gift isn’t easy but the level of detail [Boris Werner] used is something we can all learn from. The video after the break does a great job of showing just how many cool synchronized lighting features can be crammed into a tiny stage in the flavor of a real show and often using genuine Playmobil parts. Automation was a mix of MOSFET controlled LEDs for the stage lighting, addressable light rings behind the curtain, a disco ball with a stepper motor and music, all controlled by an Arduino.

Unless you are some kind of Playmobil purist, this is way cooler than anything straight out of the box. This is the first mention of Playmobil on Hackaday but miniatures are hardly a new subject like this similarly scaled space sedan.

Continue reading “Rocking Playmobil Wedding”

Becdot Teaches With Touch

Braille is a tactile system of communication, used the world over by those with vision impairment. Like any form of language or writing, it can be difficult to teach and learn. To help solve this, [memoriesforbecca] has developed Becdot as a teaching tool to help children learn Braille.

The device is built around four Braille cells, which were custom-designed for the project. The key was to create a device which could recreate tactile Braille characters at low cost, to enable the device to be cheap enough to be used a children’s toy. The Braille cells are combined with an NFC tag reader. Small objects are given NFC tags which are programmed into the Becdot. When the object is placed onto the reader, the Braille cells spell out the name of the object. Objects can be tagged and the system programmed with a smartphone, so new objects can be added by the end user.

It’s a great way to teach Braille, and an impressive build that keeps costs down low. Details are a little thin on the ground, and we’d love to see more detail on how the actuators on the Braille cells work. We’ve seen similar projects before, like this Hackaday prize entry. Share your theories in the comments below.

Capsela is Dead, Long Live Capsela

In the magical 80s, there was a building set that stood apart from the rest. Capsela, originally created by Mitzubishi Pencil Company (the Uniball folks) looked like a series of clear plastic spheres with gears and motors inside. The signature Capsela modules served as both enclosure and functional component. The set came with a variety of gear options like planetary gear, worm gear, and clutch capsules. You could use chain drives and propellers. A lot of the parts were water-resistant, and part of the toy’s shtik was that you could make boats out of it with pontoons keeping most of the robot out of the water.

Hex connectors printed by ericd3

Capsela’s sets were relatively simple, with only DC motors to make things move. However, as the product found success, the company built increasingly larger and more complicated sets with  greater capabilities. For instance, in ’87 they released the Robotic Workshop that included an IR remote that could be configured with a Commodore 64. Later on the Capsela Voice Command 6000 was released, featuring a microcontroller that could understand 8 verbal commands as well as interpret IR signals within 25 feet.

I never got any of those fancy sets, but I still found a lot to do with the basic set my parents bought me for Christmas. The unique architecture of the set was both boon and bane–it certainly was a striking set, in terms of its appearance. However, there were only so many ways you could those spheres together. Also, if you weren’t making a boat the pontoons were fairly useless, with the most clever solution being to use one as a wheel substitute.

The thing that really did it for me, other than hacking out reconfigurable boats in my bathtub, was being able to see everything. All the gearboxes could be seen though the clear plastic. How many nerds learned about mechanical engineering by peering through Capsela spheres?

As with all things, Capsela had its peak and faded away. The product was licensed to a number of new manufacturers, but never found the same success. They tried focusing on the educational market but no dice.

Nevertheless, the product has retained a degree of  nostalgia for those of us who outgrew it. A few years ago, software developer [José Romaniello] described how the toy set him on a path toward being an engineer. He started a Hacker News thread that engaged a bunch of fans in a nerdfest about how great the toy was and how one might 3D print new pieces. Not much was done in the 3DP world that I have seen, other than re-creating Capsela’s hex connectors and that sort of thing.

It’s Baaaaack….

“If they can remake Beauty and the Beast they can bring back Capsela”, is how I’m assuming the thought process went. Sure enough, a company emerged with a redesigned version of the set, available over the internet and in brick and mortar stores. Put out by a shell company called the Unitrust Development Company, the product has been renamed IQ Key.

The new kits seem very similar to those classic sets from  the 80s, other than superficial changes in the product’s appearance — the faceted geography of the pontoons and capsules suggest a refreshed product — it looks pretty much the same. The battery pack (slash switch) has also been redesigned, and looks like it may have an IR receiver built in. The company has also redesigned those hexagonal connectors and now they are circular and bayonet into place.

Is it the same old Capsela we knew and loved? Maybe, maybe not, but there’s only one way to find out: to hack the hell out of it!

Continue reading “Capsela is Dead, Long Live Capsela”

LiPo Added to LEGO Power Functions Power Brick

LEGO’s Power Functions elements mostly consist of DC motors and the hardware to be driven by those motors like gears and wheels. They also include battery packs, usually a bunch of AA cells in a plastic box. One of the challenges of the system — for hackers, anyway — is interfacing with the product line’s plugs, which resemble 2×2 plates with power and ground connectors built in, designed to be impossible to connect in reverse. It’s difficult to make the physical shape of the plug, with the connectors right where they should be. This hurdle means you also pretty much have to use LEGO’s power boxes or take your chances with frying your components from an unregulated LiPo.

The LiPo Power Brick project serves as a DC-DC power supply, serving up constant 9 V output, with
over current protection limiting current to 3 A peak or 2 A continuous and over-discharge protection shutting down the power supply when it zeroes out. It can be used in conjunction with Sbrick smart Power Functions controllers. The SBrick can also source 3A per channel, which is more than any LEGO PF-compatible power supply can deliver.

The LiPo Power Brick is the same size as a standard 2×4 brick, allowing you to easily add it to your next project.