Auto-Aiming Nerf Gun To Give You The Edge In Battle

Ever wished for some robotic enhancements for your next nerf war? Well, it’s time to dig through the parts bin and build yourself a nerf gun with aimbot built right in, courtesy of [3Dprintedlife]. (Video, embedded below.)

The gun started with a design borrowed from [Captain Slug]’s awesome catalog of open source nerf guns. [3Dprintedlife] modified the design to include a two-axis gimbal between the lower and the upper, driven by a pair of stepper motors via an Arduino. For auto-aim, a camera module attached to a Raspberry Pi running OpenCV was added. When the user half-pressed the trigger, OpenCV will start tracking whatever was at the center of the frame and actively adjust the gimbal to keep the gun aimed at the object until the user fires. The trigger mechanism consists of a pair of microswitches that activate a servo to release the sear. It is also capable of tracking a moving target or any face that comes into view.

We think this is a really fun project, with a lot of things that can be learned in the process. Mount it on a remote control tank and you’d be able to wage some intense battles in your backyard. All the files are available on GitHub.

You are never too old for a good old nerf battle. Whether you want to be a sniper, a machine gunner, or a heavy weapons specialist, there’s a weapon to build for every role.

Teardown: RADICA I-Racer

Long before the Oculus Rift and HTC Vive came along, some of the biggest names in gaming tried to develop practical stereoscopic displays. These early attempts at virtual reality (VR) were hindered by the technical limitations of their time, and most never progressed beyond the prototype stage. Of the ones that did make it to retail shelves, none managed to stick around for very long. The best known example is Nintendo’s Virtual Boy, which ended up being a financial disaster upon its release in 1995 and some regard as the gaming giant’s greatest blunder.

Despite these public failures, Radica still felt compelled to throw their hat into the ring. Best known for their line of relatively simplistic LCD handheld games, the company produced several rudimentary stereoscopic stand-alone titles in the late 1990s to try and cash in on the VR fad. Among the later entries in this series was 1999’s NASCAR i-Racer, which at least externally, looks quite a bit like modern VR headset.

Featuring a head-mounted stereoscopic display, a handheld controller, force feedback, and integrated headphones, you’d certainly be forgiven for thinking the i-Racer was ahead of its time. But its reliance on the primitive LCD technology that put Radica on the map, combined with the need to keep the game as cheap as possible, keeps the experience planted firmly in the 1990s. But perhaps there’s something we can do about that.

Continue reading “Teardown: RADICA I-Racer”

3D Printed Tank Takes On The Elements

Commercially available radio control tanks are fun and all, but sometimes you’ve just got to build your own. [Let’s Print] did just that, whipping up a tank on his 3D printer before taking it out in the snow.

The tank is a fairly straightforward build, relying on a pair of brushed motors for propulsion, controlled by twin speed controllers hooked up to standard radio control hardware. Everything else is bespoke, however, from the 3D printed gearboxes, to the chassis and the rather aggressive-looking tracks. The pointed teeth of the latter leave deep indentations when the tank cruises around on mud, though weren’t quite enough to stop the little tank from getting high-centered in deep snow.

The build isn’t for the impatient, however. [Let’s Print] notes that the tracks alone took over 80 hours to run off in PETG, let alone the rest of the frame and gearboxes. However, we’re sure it was a great learning experience, and great fun to drive outside. Now the next step is surely to go bigger. Video after the break.

Continue reading “3D Printed Tank Takes On The Elements”

Scanner Captures View-Master Discs As Glorious 3D Videos

The toys of the past may have been cheesy, but you can’t deny the creativity needed to build something engaging without any electronics. One stalwart toy from this category is View-Master, the little stereoscopic slide viewer that brought the world to life in seven vibrant scenes. And digitizing these miniature works of art is the purpose of this neat View-Master reel scanner project.

If you haven’t had the pleasure of using a View-Master, the gist is that a flat disc cardboard disc ringed with 14 color transparencies was inserted into a plastic viewer. Binocular eyepieces showed scenes from opposing pairs of slides, which were illuminated by a frosted screen and room lighting. The scenes were photographed from slightly different angles, leading to a stereoscopic image that was actually pretty good quality.

In the video below, project creator [W. Jason Altice] describes View-Master as “the YouTube of the 1950s.” We partially agree; with only seven frames to tell a story, we’d say it’s more like TikTok than YouTube. Regardless, capturing these mini-movies requires quite a bit of complexity. All the parts for the reel carousel are 3D-printed, with a small stepper to advance the reel and an optical sensor to register its position. A ring of RGB LEDs beneath the reel illuminates the slides; being able to control the color of the light helps with color balancing for slides with faded colors. An 8-megapixel camera captures each slide, and some pretty slick software helps with organizing the image pairs, tweaking their alignment, capturing the captions from the disc, and stitching everything into a video.

There’s a whole YouTube channel devoted to View-Master captures, which are best viewed with a Google Cardboard or something similar. Even without the 3D effect, it’s still pretty cool to watch [Popeye] beat up a nuke again.

Continue reading “Scanner Captures View-Master Discs As Glorious 3D Videos”

A MIDI Controller — From A Twister Mat?

Twister, the mildly embarrassing but strangely enjoyable floor contortion game that most of us have vague youthful memories of from Christmas parties. Could a Twister mat be used as an input device? [Guy Dupont] took those 24 coloured dots and made just that, after a conversation with a friend.

Wiring up a floor-sized plastic mat isn’t as easy as it might seem, and early experiments with copper foil and capacitive touch sensor chips proved to be a failure. The replacement came in the form of force sensitive resistors, read by a brace of MCP3008 multiplexed analogue-to-digital converters. These are then read by an ESP32 that does all the MIDI magic. We’re treated in the video below the break to full details including the entertaining sight of him playing Twister to a beat, prompted by a robotic-voiced random move generator, and we can see that this devices has some potential.

We’ve not seen another Twister mat before, but force sensitive resistors have made an appearance in a much higher-resolution array. It’s the LED floor game controller that has us going though.

Continue reading “A MIDI Controller — From A Twister Mat?”

Hoverboard Turned Heavy Duty Remote Control Rover

They might not be the hoverboards we were promised in Back to the Future II, but the popular electric scooters that have commandeered the name are exciting pieces of tech in their own way. Not because we’re looking to make a fool of ourselves by actually riding one, but because they’re packed full of useful hardware that’s available for dirt cheap thanks to the economies of scale and the second-hand market.

In his latest video, the ever resourceful [MakerMan] turns a pair of hoverboards into a capable remote controlled mobile platform perfect for…well, whatever you want to move around. Its welded steel construction is certainly up for some heavy duty tasks, and while we can’t say we’d ever tow a SUV with it as shown in the video below, it’s nice to know we’d have the option.

The project starts by liberating the four wheel motors from the scooters and carefully cutting down the frame to preserve the mounting hardware. These mounts are ultimately welded to the frame of the rover, with a piece of diamond plate screwed down on top. On the bottom, [MakerMan] mounts the two control boards and a custom fabricated 36 V battery pack.

He doesn’t go into any detail on how he’s interfacing the RC hardware with the motor controllers, but as we’ve seen with past hacks, there’s open source firmware replacements for these boards that allow them to be controlled by external inputs. Presumably something similar is being used here, but we’d be interested to hear otherwise. Of course you could swap the RC hardware out for a microcontroller or Raspberry Pi if you were looking to make some kind of autonomous rover.

Don’t have a welder or convenient collection of scrap steel laying around? No worries. Prolific tinkerer [Aaron Christophel] put something very similar together using bolted aluminum extrusion.

Continue reading “Hoverboard Turned Heavy Duty Remote Control Rover”

Remote Controlled Car Gets Active Suspension

Active suspensions are almost a holy grail for cars, adding so much performance gain that certain types have even been banned from Formula 1 racing. That doesn’t stop them from being used on a wide variety of luxury and performance cars, though, as they can easily be tuned on the fly for comfort or improved handling. They also can be fitted to remote controlled cars as [Indeterminate Design] shows with this electronic servo-operated active suspension system for his RC truck.

Each of the four servos used in this build is linked to the mounting point of the existing coilover suspension on the truck. This allows the servo to change the angle that the suspension is positioned while the truck is moving. As a result, the truck has a dramatic performance enhancement including a tighter turning radius, more stability, and the capability of doing donuts. The control system runs on an Arduino with an ESP32 to enable live streaming of data, and also includes an MPU6050 to monitor the position of the truck’s frame while it is in motion.

There’s a lot going on in this build especially with regard to the control system that handles all of the servos. Right now it’s only programmed to try to keep the truck’s body relatively level, but [Indeterminate Design] plans to program several additional control modes in the future. There’s a lot of considerations to make with a system like this, and even more if you want to accommodate for Rocket League-like jumps. Continue reading “Remote Controlled Car Gets Active Suspension”