A man is shown standing in a wooded area, in front of a stone wall, facing toward the camera. To the left of him, on a rock, are a selection of compasses. Further to the left, another scene is shown, of two compasses. One has a brass-colored metal ring around it, and a timer above it reads 00:04:19. A timer above the other reads 01:47:02.

A New Kind Of Inductively-damped Compass

At some point during our primary school careers, most of us probably constructed a simple compass, often by floating a magnetized needle on a cork in a cup of water. The water in such a configuration not only lets the needle spin without friction, but also dampens out (so to speak) the needle’s tendency to swing back and forth across the north-south line. Liquid-filled compasses use the same principle, but even well-made compasses can develop bubbles when exposed to temperature or pressure variations. Rather than accept this unsightly state of affairs, [The Map Reading Company] designed a new kind of liquid-free, inductively-damped compass.

It’s hard to design a compass that settles quickly, even if it uses a strong magnet, because the Earth’s own magnetic field is just so weak, and the stronger the internal magnet is, the more likely it is to be thrown off by nearby magnetic objects. As a result, they tend to swing, overshoot, and oscillate around their final orientation for some time. Most compasses use liquid to damp this, but a few, mostly military compasses, use a conductive baseplate instead: as the magnet moves, it induces eddy currents in the baseplate, which create a weak magnetic field opposing its motion, slowing the magnet down. Inductively-damped compasses don’t get bubbles, but they don’t let you see a map through the baseplate. [The Map Reading Company] dealt with this by making the baseplate transparent and surrounding the compass needle with a ring of high-conductivity copper alloy. This gave him a clear baseplate compass for easy map reading which would never develop bubbles. It’s a simple hack, and should be easy to replicate, but it still seems to be a new design. In fact, [The Map Reading Company] is releasing most of the design to the public domain. Anyone can build this design.

If this prompts your interest in compasses, check out the Earth inductor compass. We’ve also seen a visualization of the eddy currents that damp these oscillations, and even seen them used to drive a bike.

Thanks to [Mel] for the tip!

Sailing With An Autopilot

sailboat

After seeing an autopilot for a kayak a few days ago, [Mike] thought he should send in his version of a water-borne autopilot. Compared to something that fits in a one-man kayak, [Mike]’s creation is a monstrous device, able to keep a largeish sailboat on a constant heading.

To keep track of the ship’s bearing, [Mike] is using a very cool digital compass that uses LEDs to keep a steady heading. Also included is an amazingly professional and very expensive 6 axis IMU. To actually steer the ship, [Mike] is using a linear actuator attached to the tiller powered by a huge 60 Amp motor controller. The actuator only draws about 750 mA, but if [Mike] ever needs an autopilot for a container ship or super tanker, the power is right there.

For control, [Mike] ended up using an Arduino, 16-button keypad, and an LCD display. With this, he can put his autopilot into idle, calibration, and run modes, as well as changing the ship’s heading by 1, 10, and 100 degrees port or starboard.

From a day of sailing, [Mike] can safely say his autopilot works very well. It’s able to keep a constant heading going downwind, and even has enough smarts to tack upwind.

Videos below.

Continue reading “Sailing With An Autopilot”