A closeup of a transparent-bodied example of the new Steam Frame VR headset

The Engineering Behind Valve’s New VR Headset

Valve’s new Steam Frame is what all the well-connected YouTubers are talking about, but most of them are talking about what it’s like to game on it. That’s great content if you’re into it, but not exactly fodder for Hackaday — with one exception. [Gamers Nexus] gives us a half hour of relatively-unedited footage of them just chatting with the engineers behind the hardware.

It’s great stuff right from the get-go: they start with how thermal management drove the PCB design, and put the SoC on the “back” of the chip, sandwiched betwixt heat pipes. We don’t usually think of taking heat through the PCB when building a board, so it’s a neat detail to learn about before these things get into the hands of the usual suspects who will doubtless give us teardown videos in a few months.

From there wanders to power delivery — getting the voltage regulators packaged properly was a challenge, since impedance requirements meant a very tight layout. Anyone who has worked on this kind of SBC might be familiar with that issue, but for those looking in from the outside, it’s a fascinating glimpse at electrical sausage being made. That’s just the first half.

The heat-regulation conversation is partially repeated the next conversation (which seems to have happened first) where they get into the cooling requirements of the LCD screens. This requires less than you might think, as they like to run warm for fast refresh. It’s really more about keeping your face cool. They also they discuss acoustic vibration — you don’t want your integrated audio shaking your IMUs apart — and why the prototype was being blasted with freakin’ laser beams to monitor it.

If you haven’t seen or read any other coverage on the Steam Frame, you’re going to miss some context here, but if you’ve not hid under a rock for that announcement, this is amazing detail to have. We’re hugely impressed that Valve let their engineers out of their cubicle-cave to talk to media.

Sure, it’s not an open-source VR headset, but compared to the deafening silence coming from the likes of Meta, this level of information is still awesome to have.

Continue reading “The Engineering Behind Valve’s New VR Headset”

3D Printing A Cheap VR Headset

The modern era of virtual reality really kicked off in earnest just over a decade ago, when the Oculus Rift promised 3D worlds beyond your wildest dreams. Since then, nobody’s been able to come up with a killer app to convince even a mild fraction of consumers to engage with the technology. Still, if you’re keen to tinker, you might like to make your own headset like [CNCDan] has done.

The build is based almost entirely on 3D-printed components and parts sourced from AliExpress. It offers 2880x1440p resolution, thanks to a pair of square 1440×1440 LCD displays, one for each eye, paired with a couple of 34 mm lenses. The headset has adjustable interpupiliary distance so you can dial the view in to properly suit your eyes. The 3D-printed housing is designed to be compatible with headrest pads from the HTC Vive Pro for comfort’s sake. Head tracking is also available, with the inclusion of an IMU and an Arduino onboard. [CNCDan] apparently put the build together for under $150, which is not bad compared to the price of a commercial off-the-shelf unit. Files are on Github for the curious.

[CNCDan] reports good results with the DIY headset, using it primarily with his racing simulator setup. He has had some issues, however, with his LCD screens, which don’t properly run at a 90 Hz refresh rate at full resolution, which is frustrating. It’s an issue he’s still looking into. We’ve seen some other neat VR builds over the years, too. Video after the break.

Continue reading “3D Printing A Cheap VR Headset”

Svelte VR Headsets Coming?

According to Standford and NVidia researchers, VR adoption is slowed by the bulky headsets required. They want to offer a slim solution. A SIGGRAPH paper earlier this year lays out their plan or you can watch the video below. There’s also a second video, also below, covers some technical questions and answers.

The traditional headset has a display right in front of your eyes. Special lenses can make them skinnier, but this new method provides displays that can be a few millimeters thick. The technology seems pretty intense and appears to create a hologram at different apparent places using a laser, a geometric phase lens, and a pupil-replicating waveguide.

Continue reading “Svelte VR Headsets Coming?”

Heatsink Makes VR Even Cooler

Our first thought was that having big fins coming out of your VR goggles might not look very cool. But then we realized if you are wearing VR goggles, that’s probably not your biggest concern. (Ba-doom, tss.) Seriously, though, high-intensity graphics can cause your phone or device to get pretty toasty up there pressed against your face, so [arfish] set out to make a heatsink.

The build isn’t very hard. Some 0.8 mm aluminum sheet is easy to shape and cut. Thermal pads from the PC world help with heat transfer.

Continue reading “Heatsink Makes VR Even Cooler”

DIYing A VR Headset For Cheap

VR has been developing rapidly over the past decade, but headsets and associated equipment remain expensive. Without a killer app, the technology has yet to become ubiquitous in homes around the world. Wanting to experiment without a huge investment, [jamesvdberg] whipped up a low-cost headset for under $100 USD.

The build relies on Google-Cardboard-style optics, which are typically designed to work with a smartphone as the display. Instead, an 800×480 display intended for use with the Raspberry Pi is installed, hooked up over HDMI. An MPU6050 IMU is then installed to monitor the headset’s movements, hooked up to an Arduino Micro that passes this information to the attached PC. The rest of the build simply consists of cable management and power supply to all the hardware. It’s important to get this right, so that one doesn’t get tangled up by the umbilical when playing.

While it won’t outperform a commercial unit, the device nevertheless offers stereoscopic VR at a low cost. For a very cheap and accessible VR experience that’s compatible with the PC, it’s hard to beat. Others have done similar work too. Video after the break.

Continue reading “DIYing A VR Headset For Cheap”

Glasses Heads-up Display


[Ozan] sent in his first attempt at making his own heads up display. The optics are very simple in design, and he gutted a commercial heads up display (ICUITI) for the LCD panel and interface electronics. I haven’t played with many head mounted displays since the Nintendo virtual boy. I’m not up on my field of view calculations, so it’s difficult to equate this to a commercial headset.