Will .IO Domain Names Survive A Geopolitical Rearrangement?

The Domain Name System (DNS) is a major functional component of the modern Internet. We rely on it for just about everything! It’s responsible for translating human-friendly domain names into numerical IP addresses that get traffic where it needs to go. At the heart of the system are the top-level domains (TLDs)—these sit atop the whole domain name hierarchy.

You might think these TLDs are largely immutable—rock solid objects that seldom change. That’s mostly true, but the problem is that these TLDs are sometimes linked to real-world concepts that are changeable. Like the political status of various countries! Then, things get altogether more complex. The .io top level domain is the latest example of that.

Continue reading “Will .IO Domain Names Survive A Geopolitical Rearrangement?”

A Robust Guide To The Xbox 360 Glitch Hack

The Xbox 360 was a difficult console to jailbreak. Microsoft didn’t want anyone running unsigned code, and darn if they didn’t make it difficult to do so. However, some nifty out of the box thinking and tricky techniques cracked it open like a coconut with a crack in it. For the low down, [15432] has a great in-depth article on how it was achieved. The article is in Russian, so you’ll want to be armed with Google Translate for this one.

The article gets right into the juice of how glitch attacks work—in general, and with regards to the Xbox 360. In the specific case of the console, it was all down to the processor’s RESET line. Flicker it quickly enough, and the processor doesn’t actually reset, but nonetheless its behavior changes. If you time the glitch right, you can get the processor to continue running through the bootloader’s instructions even if a hash check instruction failed. Of course, timing it right was hard, so it helps to temporarily slow down the processor.

From there, the article continues to explore the many and varied ways this hack played out against Microsoft’s copy protection across multiple models and revisions of the Xbox 360. The bit with the BGA ball connections is particularly inspired. [15432] also goes even deeper into a look at how the battle around the Xb0x 360’s DVD-ROM drive got heated.

We seldom talk about the Xbox 360 these days, but they used to grace these pages on the regular. Video after the break.

Continue reading “A Robust Guide To The Xbox 360 Glitch Hack”

Little RC Car Project Takes Inspiration From Mario Kart

RC cars used to be pretty simple. They’d go forwards, backwards, and steer if you got a full-function toy. However, with modern technology, it’s pretty trivial to make them more advanced. [Stuck at Prototype] demonstrates that nicely with his little Micro Racer Cars.

Each little RC car has its own ESP32 running the show, hooked up with a motor controller running a small DC gear motor at each wheel. Power is from a lithium-polymer battery on board the car, which is charged via USB C. 3D-printed components form the chassis and body of the vehicle. [Stuck at Prototype] set the cars up so they could be controlled via a smartphone app, or via a custom RC controller of his own design. He liked the latter solution after he realized how hard apps were to maintain. He also gave the cars a little color sensor so they could detect color patches on the ground, so they could change their behavior in turn. This was to create gameplay like Mario Kart, where hitting a color patch might make the car go fast, go slow, or spin out.

The video goes into great detail about everything these tiny tabletop racers can do. The racer cars were initially intended to be a Kickstarter funded project, but it never quite reached its goal. Instead, [Stuck at Prototype] decided to release the designs online instead, putting the relevant files on Github.

We’ve seen some other neat RC projects before, too. Video after the break.

Continue reading “Little RC Car Project Takes Inspiration From Mario Kart”

FM Transmitter Remotely Controlled Via ESP32

Imagine you’ve got an FM transmitter located some place. Wouldn’t it be mighty convenient if you could control that transmitter remotely? That way, you wouldn’t have to physically attend to it every time you had to change some minor parameters! To that end, [Ricardo Lima Caratti] built a rig to do just that.

The build is based around the QN8066—a digital FM transceiver built into a single chip. It’s capable of transmitting and receiving anywhere from 60 MHz to 108 MHz, covering pretty much all global FM stereo radio bands. [Ricardo] paired this chip with an ESP32 for command and control. The ESP32 hosts an HTTP server, allowing the administration of the FM transmitter via a web browser. Parameters like the frequency, audio transmission mode, and Radio Data Service (RDS) information can be controlled in this manner.

It’s a pretty neat little build, and [Ricardo] demonstrates it on video with the radio transmitting some field day content. We’ve seen some other nifty FM transmitters over the years, too. Video after the break.

Continue reading “FM Transmitter Remotely Controlled Via ESP32”

Teardowns Show Off Serious Satellite Hardware

As hackers, we’re always pulling stuff apart—sometimes just to see what it’s like inside. Most of us have seen the inside of a computer, television, and phone. These are all common items that we come into contact with every day. Fewer of us have dived inside real spacey satellite hardware, if only for the lack of opportunity. Some good gear has landed on [Don]’s desk over the years though, so he got to pulling it apart and peering inside.

[Don] starts us off with a gorgeous… box… of some sort from Hughes Aircraft. He believes it to be from their Space & Communications group, and it seems to have something to do with satellite communications work. Externally, he gleans that it takes power and data hookups and outputs RF to, something… but he’s not entirely sure. Inside, we get a look at the old 90s electronics — lots of through hole, lots of big chunky components, and plenty of gold plating. [Don] breaks down the circuitry into various chunks and tries to make sense of it, determining that it’s got some high frequency RF generators in the 20 to 40 GHz range.

Scroll through the rest of [Don]’s thread and you’ll find more gems. He pulls apart a microwave transmitter from Space Micro — a much newer unit built somewhere around 2008-2011. Then he dives into a mysterious I/O board from Broad Reach, and a very old Hughes travelling wave tube from the 1970s. The latter even has a loose link to the Ford Motor Company, believe it or not.

Even if you don’t know precisely what you’re looking at, it’s still supremely interesting stuff—and all very satellite-y. We’ve seen some other neat satellite gear pulled apart before, too. Meanwhile, if you’ve been doing your own neat teardowns, don’t hesitate to let us know!

MOTU Audio Interface Resurrected After Some Reverse Engineering

These days, when something electronic breaks, most folks just throw it away and get a new one. But as hackers, we prefer to find out what the actual problem is and fix it. [Bonsembiante] took that very tack when a MOTU brand audio interface wasn’t booting. As it turns out, a bit of investigative work led to a simple and viable fix.

The previous owner had tried to get the unit fixed multiple times without success. When it ended up on [Bonsembiante]’s bench, reverse engineering was the order of the day. Based around an embedded Linux system, there was lots to poke and prod at inside, it’s just that… the system wasn’t booting, wasn’t showing up over USB or Ethernet, or doing much of anything at all.

Extracting the firmware only revealed that the firmware was actually valid, so that was a dead end. However, after some work following the boot process along in Ghidra, with some external help, the problem was revealed. Something was causing the valid firmware to fail the bootloader’s checks—and with that fixed, the unit booted. You’ll have to read the article to get the full juicy story—it’s worth it!

We’ve seen [Bonsembiante’s] work here before, when they turned an old ADSL router into a functioning guitar pedal. Video after the break.

Continue reading “MOTU Audio Interface Resurrected After Some Reverse Engineering”

Building A ZX Spectrum Using Only New Parts

Ah, the Sinclair ZX Spectrum. A popular computer in Britain and beyond, but now rather thin on the ground. If you can’t find one, fear not, for now—you can apparently build a new one with new parts! [TME Retro] is here to demonstrate how.

Before you get excited, no—Sinclair has not risen from the dead. Instead, it’s simply down to the state of the retrocomputing community. There are enough reproduction parts and components out there for the ZX Spectrum that it’s now possible to assemble the whole computer from new bits. You can get new cases and new mechanical keyboards, and a 100% compatible motherboard in the form of the Harlequin board. The latter even reproduces the unobtainable Spectrum ULA glue logic chip in raw logic!

It’s neat to see the ZX Spectrum live on decades after the production lines ground to a halt. We’ve seen similar feats achieved with the legendary Commodore 64; you’d think we had enough of them given they were the best-selling computer of all time. Video after the break.

Continue reading “Building A ZX Spectrum Using Only New Parts”