Biodegradable Implants Supercharge Nerve Regeneration

Controlled electrical stimulation of nerves can do amazing things. It has been shown to encourage healing and growth in damaged cells of the peripheral nervous system which means regaining motor control and sensation in a shorter period with better results. This type of treatment is referred to as an electroceutical, and the etymology is easy to parse. The newest kid on the block just finished testing on rat subjects, applying electricity for one, three, or six days per week in one-hour intervals. The results showed that more treatment led to faster healing. The kicker is that the method of applying electricity was done through unbroken skin on an implant that dissolves harmlessly.

The implant in question is, at its most basic, an RFID tag with leads that touch the injured nerves. This means wireless magnetic coupling takes power from an outside source and delivers it to where it is needed. All the traces on are magnesium. There is a capacitor with silicon dioxide sandwiched between magnesium, and a diode made from a doped silicon nanomembrane. All this is encased in a biodegradable substrate called poly lactic-co-glycolic acid, a rising star for FDA-approved polys. Technologically speaking, these are not outrageous.

These exotic materials are not in the average hacker’s hands yet, but citizen scientists have started tinkering with the less invasive tDCS and which is applying a small electrical current to the brain through surface electrodes or the brain hacking known as the McCollough effect.

Via IEEE Spectrum.

Airbus To Halt Production Of The A380; Goodbye to an Engineering Triumph

Eleven years ago, the Airbus A380 entered commercial service with Singapore Airlines. In the time since then it has become the queen of the skies. It’s a double-decker airliner, capable of flying 550 passengers eight thousand nautical miles. Some configurations of the A380 included private suites. Some had a shower. This is the epitome of luxury, a dream of flying with long-stemmed glasses, a movie, and a pleasant dream in mid-air.

Now, after the cancellation of A380 orders by Emirates, Airbus has announced it will end production of this massive, massive plane. No, it’s not the last flight of the Concorde, but it is the beginning of the end of an era. The biggest and most impressive planes just aren’t economical; it’s possible to fly three 787s across the globe for a single flight of an A380. The skies won’t fall silent, but soon the A380 will be no more.

Continue reading “Airbus To Halt Production Of The A380; Goodbye to an Engineering Triumph”

Western Digital Releases Their RISC-V Cores To The World

What grew out of a university research project is finally becoming real silicon. RISC-V, the ISA that’s completely Big-O Open, is making inroads in dev boards, Arduino-ish things, and some light Internet of Things things. That’s great and all, but it doesn’t mean anything until you can find RISC-V cores in actual products. The great hope for RISC-V in this regard looks to be Western Digital, manufacturers of storage. They’re going to put RISC-V in all their drives, and they’ve just released their own version of the core, the SweRV.

Last year, Western Digital made the amazing claim that they will transition their consumption of silicon over to RISC-V, putting one Billion RISC-V cores per year into the marketplace. This is huge news, akin to Apple saying they’re not going to bother with ARM anymore. Sure, these cores won’t necessarily be user-facing but at least we’re getting something.

As far as technical specs for the Western Digital SweRV core go, it’s a 32-bit in-order core, with a target implementation process of 28nm, running at 1.8GHz. Performance per MHz is good, and if you want a chip or device to compare the SweRV core to (this is an inexact comparison, because we’re just talking about a core here and not an entire CPU or device), we’re looking at something between a decade-old iPhone or a very early version of the Raspberry Pi and a modern-ish tablet. Again, an inexact comparison, but no direct comparison can be made at this point.

Since Western Digital put the entire design for the SweRV core on Github, you too can download and simulate the core. It’s just slightly less than useless right now, but the design is proven in Verilator; running this on a cheap off-the-shelf FPGA dev board is almost a fool’s errand. However, this does mean there’s progress in bringing RISC-V to the masses, and putting Open cores in a Billion devices a year.

Hidden LED Video Wall At The Oregon Museum of Science

Glowing and blinking things are some of our favourite projects around these parts, and the bigger, the better. [Thomas] wrote to us recently to share the design and construction of a large LED wall at the Oregon Museum of Science, and the results are nothing short of impressive.

The concept involved a large LED wall that would be completely hidden when switched off. The team decided to approach this by hiding high-brightness LED panels using APA102 strings behind milky-white plexiglass panels covered with a woodgrain print. The screen has a total of 90,000 pixels, arranged in a 408×220 resolution display.

A lot of bespoke LED displays have some pre-coded patterns, or perhaps some basic reactive features. In this case, FPGA grunt was brought to bear on the problem and the display accepts standard HDMI input. Four Spartan 6 Mojo FPGA boards split up the task of addressing the panels, each receiving the same HDMI signal, but only crunching the pixels relevant to their area of the display. To make sure clean SPI signals get to each panel, special RS485 driver chips are used to send the signal over a differential pair from the FPGA, before breaking the signal back out to standard SPI at the destination.

Building such a large display takes special techniques, and [Thomas] notes that the help of a local construction company was imperative to making the construction of the final video wall look easy. It’s always interesting to see what goes into these large installations. Sometimes, a major build can even clear out world stocks of important components.

The Deep Space Energy Crisis Could Soon Be Over

On the face of it, powering most spacecraft would appear to be a straightforward engineering problem. After all, with no clouds to obscure the sun, adorning a satellite with enough solar panels to supply its electrical needs seems like a no-brainer. Finding a way to support photovoltaic (PV) arrays of the proper size and making sure they’re properly oriented to maximize the amount of power harvested can be tricky, but having essentially unlimited energy streaming out from the sun greatly simplifies the overall problem.

Unfortunately, this really only holds for spacecraft operating relatively close to the sun. The tyranny of the inverse square law can’t be escaped, and out much beyond the orbit of Mars, the size that a PV array needs to be to capture useful amounts of the sun’s energy starts to make them prohibitive. That’s where radioisotope thermoelectric generators (RTGs) begin to make sense.

RTGs use the heat of decaying radioisotopes to generate electricity with thermocouples, and have powered spacecraft on missions to deep space for decades. Plutonium-238 has long been the fuel of choice for RTGs, but in the early 1990s, the Cold War-era stockpile of fuel was being depleted faster than it could be replenished. The lack of Pu-238 severely limited the number of deep space and planetary missions that NASA was able to support. Thankfully, recent developments at the Oak Ridge National Laboratory (ORNL) appear to have broken the bottleneck that had limited Pu-238 production. If it pays off, the deep space energy crisis may finally be over, and science far in the dark recesses of the solar system and beyond may be back on the table.

Continue reading “The Deep Space Energy Crisis Could Soon Be Over”

Arduino Enters the Cloud

Love it or hate it, for many people embedded systems means Arduino. Now Arduino is leveraging its more powerful MKR boards and introducing a cloud service, the Arduino IoT Cloud. The goal is to make it simple for Arduino programs to record data and control actions from the cloud.

The program is in beta and features a variety of both human and machine interaction styles. At the simple end, you can assemble a dashboard of controls and have the IoT Cloud generate your code and download it to your Arduino itself with no user programming required. More advanced users can use HTTP REST, MQTT, Javascript, Websockets, or a suite of command line tools.

Continue reading “Arduino Enters the Cloud”

Can You Take Control Of A TinyWhoop?

Regular readers will have followed our series of posts looking at the issues surrounding reports of drones in proximity to aircraft, and will have noted that we recently asked our community how they would approach the detection and handling of marauding drones in controlled airspace. We are mere amateurs though by comparison to a team with its roots in Delft University of Technology’s Micro Air Vehicle Laboratory, because they have approached the problem through DroneClash, a spectacle best described as akin to a Robot Wars competition for drones. Their website states that “Anything goes, with one exception: no jamming“, and teams will do battle before an audience for a share in a considerable prize fund.

The fun is not however limited to team members. People in the audience will also be able to participate, by being invited to try their luck at bringing down a TinyWhoop that will periodically fly into the arena for a chance at their own prize. The ubiquitous cheap toy drone will be accessible through software, and would-be attackers are invited to register in advance to take a pop at it.

It looks as if DroneClash will be an unmissable event for anyone able to make it to the Netherlands on March 16th. We’ve mentioned it in past years, and we look forward to seeing what comes out of it this year too.

TinyWhoop header image: Dan Lundmark, (CC BY 2.0).