Making an Inductor Saturation Current Tester

inductor saturation tester

[Kalle] tipped us about a quick project he made over a couple of evenings: an inductor saturation current tester. All the components used for it were salvaged from a beefy telecom power supply, which allows the tester to run currents up to 100A during 30us in the inductors to be characterized.

Knowing the limits of an inductor is very convenient when designing Switch Mode Power Supplies (SMPS) as an inadequate choice may result in very poor performances under high loads. [Kalle]‘s tester simply consists in a N-Mosfet switching power through a load while a shunt allows current measurements. The saturation point is then found when the current going through the inductor suddenly peaks. As you can see from the picture above, 16 4700uF electrolytic caps are used to compensate for the sudden voltage drop when the Mosfet is activated. A video of the system in action is embedded after the break.

[Read more...]

Bluetooth Thingies at Maker Faire

In case you haven’t noticed, one of the more popular themes for new dev boards is Bluetooth. Slap a Bluetooth 4.0 module on a board, and you really have something: just about every phone out there has it, and the Low Energy label is great for battery-powered Internets of Things.

Most of these boards fall a little short. It’s one thing to throw a Bluetooth module on a board, but building the software to interact with this board is another matter entirely. Revealing Hour Creations is bucking that trend with their Tah board. Basically, it’s your standard Arduino compatible board with a btle module. What they’ve done is add the software for iOS and Android that makes building stuff easy.

Putting Bluetooth on a single board is one thing, but how about putting Bluetooth on everything. SAM Labs showed off their system of things at Maker Faire with LEDs, buttons, fans, motors, sensors, and just about every electrical component you can imagine.

All of these little boards come with a Bluetooth module and a battery. The software for the system is a graphical interface that allows you to draw virtual wires between everything. Connect a button to a LED in the software, and the LED will light up when the button is pressed. Move your mouse around the computer, and the button will turn on a motor when it’s pressed.

There are a few APIs that also come packaged into the programming environment – at the booth, you could open a fridge (filled with cool drinks that didn’t cost five dollars, a surprise for the faire) and it would post a tweet.

Retrotechtacular: The Diesel Story

title cardThe diesel engine was, like many things, born of necessity. The main engine types of the day—hot bulb oil, steam, coal gas, and gasoline—were not so thermally efficient or ideal for doing heavy-duty work like driving large-scale electrical generators.  But how did the diesel engine come about? Settle in and watch the 1952 documentary “The Diesel Story“, produced by Shell Oil.

The diesel engine is founded on the principle of internal combustion. Throughout the Industrial Age, technology was developing at breakneck pace. While steam power was a great boon to many burgeoning industries, engineers wanted to get away from using boilers. The atmospheric gas engine fit the bill, but it simply wasn’t powerful enough to replace the steam engine.

hot bulb oil engineBy 1877, [Nikolaus Otto] had completed work on his coal gas engine built on four-stroke theory. This was the first really useful internal combustion engine and the precursor of modern four-stroke engines. It was eventually adapted for transportation with gasoline fuel. In 1890, the hot bulb oil engine was developed under the name Hornsby-Akroyd and primarily used in stationary power plants. Their flywheels had to be started manually, but once the engine was going, the bulb that drove combustion required no further heating.

[Read more...]

A Folding Laser Cutter

Want a laser cutter, but don’t have the space for one? How about a portable machine to engrave and cut wood and plastics? A folding laser cutter solves these problems, and that’s exactly what Red Ant Lasers was showing off last weekend at Maker Faire.

Inside the team’s Origami laser cutter is a 40 Watt CO2 tube, shooting its beam along an entirely enclosed beam path. The beam travels through the body of the machine, out into the folding arm of the machine, and down to whatever material you’ve placed the Origami on. It’s a 40 Watt laser so it will cut plywood and plastics, and as shown in the video above, does a fine job at engraving plywood.

This is a Class 4 laser device operating without any safety glass, but from the short time I spent with the Red Ant team, this is a reasonably safe device. You will need safety glasses if you’re within five feet, but after that, everything (according to OSHA, I think) is safe and not dangerous. Either way, it’s a tool just like a table saw. You don’t see commentors on the Internet complaining about how a spinning metal blade is dangerous all the time, do you?

The Red Ant guys are currently running a Kickstarter for their project, with a complete unit going for $4200. It’s pricier than a lot of other lasers, but not being constrained by the size of a laser cutters enclosure does open up a few interesting possibilities. You could conceivably cut a 4×8 sheet of plywood with this thing, and exceptionally large engravings start looking easy when you have a portable laser cutter.

THP Semifinalist: Honeybee Hive Monitoring

hives[Ken] keeps his bees remotely and can’t check on them as often as he might like to. He wanted some way of knowing when they were out of space, because that slows down their nectar collection. He knew he could do this by remotely tracking the weight and internal temperature of the hives.

His first prototype revolved around a postal scale that couldn’t be turned off between readings. This meant that he needed a bigger solar panel and battery than originally intended. For about a week, the hives were sending data to Thingspeak through an Arduino Fio over XBee.

The current iteration measures the load cells with an HX711 24-bit ADC. This sends the scale data to an Apitronics Bee unit, which adds in temperature data from the hives and sends everything to an Apitronics Hive. [Ken] will also stream it to a cloud service so he can monitor them in real-time. [Ken] wants to see as much data as possible and contribute to NASA’s HoneyBeeNet program, so he has a second Bee unit set up to handle a nearby Apitronics weather station.

SpaceWrencherThe project featured in this post is a semifinalist in The Hackaday Prize.

Choreographed Iron Dust Dances to the Beat

Up on the second level of World Maker Faire’s main hall, one could hear Technotronic’s hit “Pump up the Jam” playing again and again. We were expecting breakdancing robots, but upon investigating, what we found was something even better. [David Durlach] was showing off his Choreographed Iron Dust, a 9 x 9 grid of magnets covered in iron filings. The filings swayed and danced to the beat of the music, at times appearing more like ferrofluid than a dry material. Two LED lights shined on the filings from an oblique angle. This added even more drama to the effect as the light played on the dancing spikes and ridges.

While chatting with [David] he told us that this wasn’t a new hack. Choreographed Iron Dust made its debut at the Boston Museum of Science back in 1989. Suddenly the 80’s music made more sense! The dust’s basic control system hasn’t changed very much since the 1980’s. The magnets are actually a stack of permanent and electromagnets. The permanent magnet provides enough force to hold the filings in place. The electromagnets are switched on to make the filings actually dance.

Since it was designed in 1989, there were no Arduinos available. This project is powered by the most hacker friendly interface of the era: the PC’s parallel port. As one might imagine, [David] has been having a hard time finding PC’s equipped with parallel ports these last few years.

[David] wasn’t just showing off iron dust. Having spent so much time painstakingly animating the iron filings for various customers, he knew there had to be a better way. He’s come up with ChoreoV, a system which can take recorded video, live performances, or even capture a section of a user’s screen. The captured data can then be translated directly into light or motion on an art piece.

World’s Largest “Nixie” Clock at World Maker Faire

NixieRex1World Maker Faire was host to some incredible projects. Among the favorites was Nixie Rex [YouTube Link]. Nixie Rex is actually a Panaplex display, since it’s glow comes from 7 planer segments rather than 10 stacked wire digits. One thing that can’t be contested is the fact that Rex is BIG. Each digit is nearly 18 inches tall!

Nixie Rex was created by [Wayne Strattman]. Through his company Strattman Design, [Wayne] supplies lighting effects such as plasma globes and lightning tubes to the museums and corporations. Nixie Rex’s high voltage drive electronics were created by [Walker Chan], a PHD student at MIT. Believe it tor not the entire clock runs on an ATmega328P based Arduino. The digits are daisy chained from the arduino using common Ethernet cables and RJ45 connectors. A Sparkfun DS1307 based real-time clock module ensures the Arduino keeps accurate time.

[Wayne] and Rex were located in “The Dark Room” at Maker Faire, home to many LED and low light projects. The dim lighting certainly helped with the aesthetics, but it did make getting good photos of the clock difficult. Long time Hackaday tipster [Parker] graciously provided us with a size reference up above.

Click past the break to see a closeup of that awesome cathode glow, and a video of the Nixie Rex  in action.

[Read more...]

Follow

Get every new post delivered to your Inbox.

Join 94,102 other followers