A Folding Laser Cutter

Want a laser cutter, but don’t have the space for one? How about a portable machine to engrave and cut wood and plastics? A folding laser cutter solves these problems, and that’s exactly what Red Ant Lasers was showing off last weekend at Maker Faire.

Inside the team’s Origami laser cutter is a 40 Watt CO2 tube, shooting its beam along an entirely enclosed beam path. The beam travels through the body of the machine, out into the folding arm of the machine, and down to whatever material you’ve placed the Origami on. It’s a 40 Watt laser so it will cut plywood and plastics, and as shown in the video above, does a fine job at engraving plywood.

This is a Class 4 laser device operating without any safety glass, but from the short time I spent with the Red Ant team, this is a reasonably safe device. You will need safety glasses if you’re within five feet, but after that, everything (according to OSHA, I think) is safe and not dangerous. Either way, it’s a tool just like a table saw. You don’t see commentors on the Internet complaining about how a spinning metal blade is dangerous all the time, do you?

The Red Ant guys are currently running a Kickstarter for their project, with a complete unit going for $4200. It’s pricier than a lot of other lasers, but not being constrained by the size of a laser cutters enclosure does open up a few interesting possibilities. You could conceivably cut a 4×8 sheet of plywood with this thing, and exceptionally large engravings start looking easy when you have a portable laser cutter.

THP Semifinalist: Honeybee Hive Monitoring

hives[Ken] keeps his bees remotely and can’t check on them as often as he might like to. He wanted some way of knowing when they were out of space, because that slows down their nectar collection. He knew he could do this by remotely tracking the weight and internal temperature of the hives.

His first prototype revolved around a postal scale that couldn’t be turned off between readings. This meant that he needed a bigger solar panel and battery than originally intended. For about a week, the hives were sending data to Thingspeak through an Arduino Fio over XBee.

The current iteration measures the load cells with an HX711 24-bit ADC. This sends the scale data to an Apitronics Bee unit, which adds in temperature data from the hives and sends everything to an Apitronics Hive. [Ken] will also stream it to a cloud service so he can monitor them in real-time. [Ken] wants to see as much data as possible and contribute to NASA’s HoneyBeeNet program, so he has a second Bee unit set up to handle a nearby Apitronics weather station.

SpaceWrencherThe project featured in this post is a semifinalist in The Hackaday Prize.

Choreographed Iron Dust Dances to the Beat

Up on the second level of World Maker Faire’s main hall, one could hear Technotronic’s hit “Pump up the Jam” playing again and again. We were expecting breakdancing robots, but upon investigating, what we found was something even better. [David Durlach] was showing off his Choreographed Iron Dust, a 9 x 9 grid of magnets covered in iron filings. The filings swayed and danced to the beat of the music, at times appearing more like ferrofluid than a dry material. Two LED lights shined on the filings from an oblique angle. This added even more drama to the effect as the light played on the dancing spikes and ridges.

While chatting with [David] he told us that this wasn’t a new hack. Choreographed Iron Dust made its debut at the Boston Museum of Science back in 1989. Suddenly the 80’s music made more sense! The dust’s basic control system hasn’t changed very much since the 1980’s. The magnets are actually a stack of permanent and electromagnets. The permanent magnet provides enough force to hold the filings in place. The electromagnets are switched on to make the filings actually dance.

Since it was designed in 1989, there were no Arduinos available. This project is powered by the most hacker friendly interface of the era: the PC’s parallel port. As one might imagine, [David] has been having a hard time finding PC’s equipped with parallel ports these last few years.

[David] wasn’t just showing off iron dust. Having spent so much time painstakingly animating the iron filings for various customers, he knew there had to be a better way. He’s come up with ChoreoV, a system which can take recorded video, live performances, or even capture a section of a user’s screen. The captured data can then be translated directly into light or motion on an art piece.

World’s Largest “Nixie” Clock at World Maker Faire

NixieRex1World Maker Faire was host to some incredible projects. Among the favorites was Nixie Rex [YouTube Link]. Nixie Rex is actually a Panaplex display, since it’s glow comes from 7 planer segments rather than 10 stacked wire digits. One thing that can’t be contested is the fact that Rex is BIG. Each digit is nearly 18 inches tall!

Nixie Rex was created by [Wayne Strattman]. Through his company Strattman Design, [Wayne] supplies lighting effects such as plasma globes and lightning tubes to the museums and corporations. Nixie Rex’s high voltage drive electronics were created by [Walker Chan], a PHD student at MIT. Believe it tor not the entire clock runs on an ATmega328P based Arduino. The digits are daisy chained from the arduino using common Ethernet cables and RJ45 connectors. A Sparkfun DS1307 based real-time clock module ensures the Arduino keeps accurate time.

[Wayne] and Rex were located in “The Dark Room” at Maker Faire, home to many LED and low light projects. The dim lighting certainly helped with the aesthetics, but it did make getting good photos of the clock difficult. Long time Hackaday tipster [Parker] graciously provided us with a size reference up above.

Click past the break to see a closeup of that awesome cathode glow, and a video of the Nixie Rex  in action.

[Read more...]

Topsy Turvy Clock Tells Confusing Time

ClockFaceFinished

Looking for a new clock but hate the fact that all the numbers are always in the correct order? Look no further than [Andy]‘s topsy turvy clock which correctly tells time despite the fact that the numbers on the face of the clock are in random positions.

At first glance, the clock looks fairly normal despite the mixed-up numerals. Upon closer inspection, the clock is much more than it appears to be. A battery backed real-time clock keeps track of time, and a microcontroller turns the hands of the clock to where they need to be. The clock uses optical sensors to make sure the hands are in the correct starting position when it is first powered on.

Check out the video below for a better illustration of what the clock looks like when in operation. The hour hand is always pointing at the correct hour, and the minute hand starts every five minutes at the number it would have started at on a normal clock, i.e. at 1:15 the hour hand will point at “one” and the minute hand will point at “three”.

We love this very interesting and unique take. It was inspired by a few other clocks, including a version of the infamous Vetinari “random tick” clock which will drive you crazy in a different way.

Freescale and Texas Instruments Goodies and World Maker Faire

Freescale was very kind to Hackaday at Maker Faire this weekend, showing off a few boards and answering a few questions about why old Motorola application notes aren’t available on the Internet.

The Hummingboard from SolidRun comes in an oddly familiar form factor to anyone who has ever handled a Raspberry Pi. It also has an interesting feature: the CPU is on a small module, allowing anyone to upgrade the chipset to something significantly more powerful. In the top of the line configuration, it has a two core iMX6 CPU with a Gig of RAM, LVDS output, and Gigabit Ethernet. All the complex bits for this board are on a single module, allowing anyone to take the module and put it in another project, a la the Intel Edison.

Also in the Freescale booth was the pcDuino, a dual core ARM Cortex A7 with Ethernet, WiFi, and a SATA, with Arduino form factor pinouts. It’s a somewhat niche product, but being able to stack shields on something comparable to a Raspi or BeagleBone is a nice feature.

[Trey German] from Texas Instruments showed off some very cool stuff, including a quadcopter board for a Launchpad microcontroller. This isn’t a board with an IMU and a few servo outputs; this is the whole shebang with a frame, motors, and props. The frame was cut from some odd composite that’s usually used for road signs, and even though it wasn’t flying at the Faire (nothing was flying, by the way), it’s pretty light for a quad made at a board house.

Also from TI was their CC3200 dev board. This is a single chip with an ARM Cortex M4 and a WiFi radio that we’ve seen before. The CC3200 runs TI’s Wiring/Arduino inspired development environment Energia, and at about $30 for the CC3200 Launchpad board, it’s an easy and cheap way to build an Internet of Things thing.

Scripting Debug Sessions: Python for GDB Remote Serial Protocol

pyrsp-scripted-gdb

Are you tired of hammering out the same commands over and over again in GDB? If not, we highly encourage you take more advantage of The GNU Project Debugger, which is a fantastic way to poke around inside your microcontrollers while they’re running a program.

Back to the matter at hand. [Stef] put together a Python program that leverages GDB’s Remote Serial Protocol. He calls it pyrsp and the talk he recently gave about it can be seen below.

The core feature is the ability to add a callback in your C code that triggers the Python script. Think of this a little bit like a print statement, except you have so much more power since it’s Python and GDB doing the “printing”. Anything that can be done at a breakpoint in GDB can now be executed automatically. So if you need to check a group of registers at every loop execution for hundreds of loops your wrists are going to thank you. Better yet, you can use Python to do the sanity checks automatically, continuing when the data is good and alerting you when it’s not. Neat!

[Read more...]

Follow

Get every new post delivered to your Inbox.

Join 94,072 other followers