HAWT Wind Turbine Is Mostly 3D Printed

Wind turbines are a great source of renewable energy, and a great DIY project, too. They can be built with all kinds of materials and the barrier for entry is low for the beginner. [Fab] has built just such a device, taking advantage of modern construction techniques, and dubbed it the WinDIY.

The WinDIY design is mostly 3D printed, with a familiar three-bladed design. The diameter of the rotor is 1.2 m, meaning that braking and regulating the turbine is required for safety in high winds. [Fab] is aiming to achieve this control with a combination of mechanical and electronic braking, as well as variable-pitch blades. The benefit of 3D printing the design is it allows iterations to be made quickly, particularly of parts with complex geometries that would be too time-consuming or expensive to machine otherwise.

[Fab]’s writeup goes into great detail on topics like the design of the pitch control systems and other minutae, which should serve as a great reference for anyone else working on a similar project. If you’re looking for something with more of a sci-fi future vibe, consider attempting a vertical-axis build instead.

13 thoughts on “HAWT Wind Turbine Is Mostly 3D Printed

  1. I don’t know what “HAWT” means and the post doesn’t say. So I went searching the web for a picture or diagram to explain it. Now I know.

    I’ll be in my bunk.

    1. From the context of this article, I assume it stands for “horizontal axis wind turbine”, but I read it as “extremely sexually appealing, via a deliberate misspelling of ‘hot'” at first.

      1. It’s either a “horizontal axis wind turbine wind turbine,” which would be a horrible abuse of the language, or an “extremely sexually appealing wind turbine.” I’m gonna give Lewin’s English cromulence the benefit of the doubt and conclude that he’s got a kink for rotating machinery.

    1. Hey Gregg,
      you are absolutely right. I want to optimize this in the future. Thats why I made the wing easy repacable. You just have to remove two screws and the whole wing can be exchanged. I did look in between for a software to simulate such a blade and find the best shape. Sadly there are just (expensive) non free softwares available to simulate such specific stuff. Very open for any input about that topic. :)

        1. Qblade indeed.

          I work in commercial crossflow tidal turbines and we use Qblade as well. We have more resources than a hobbyist of course so we also use 2D and 3D CFD however that does not diminish Qblade. It’s certainly been extremely useful in narrowing down the options to examine with CFD. Profile, taper, diameter, twist etc. etc.

          For HAWT’s, Qblade would do well in giving good data, for VAWT’s we trust is more qualitative comparisons.

Leave a Reply to Gamma RaymondCancel reply

Please be kind and respectful to help make the comments section excellent. (Comment Policy)

This site uses Akismet to reduce spam. Learn how your comment data is processed.