2019 Hackaday Prize Hack Chat

Join us Wednesday, April 17 at noon Pacific time for the 2019 Hackaday Prize Hack Chat!

The 2019 Hackaday Prize was just announced, and this year the theme is designing for manufacturing. The hacker community has come a long, long way in the last few years in terms of the quality of projects we turn out. Things that were unthinkable just a few short years ago are now reduced to practice, and our benches and breadboards are always stuffed with the latest and greatest components and modules, all teaming up to do wondrous things. But what about the next step? Do you have what it takes to turn that mess o’ wires into a product? What skills do you need to add to your repertoire to make sure you can actually capitalize on your prototype — or more importantly, to get your ideas into someone else’s hands where they can actually do some good? That’s what the Hackaday Prize is all about this year, and we want you taking your projects to the next level!

Majenta Strongheart will be hosting the Hack Chat as we discuss:

  • The importance of designing for manufacturing;
  • What tools we have available to turn prototypes into projects;
  • How the Hackaday Prize is set up this year, and why the theme was selected; and
  • Why you should participate in the 2019 Hackaday Prize

You are, of course, encouraged to add your own questions to the discussion. You can do that by leaving a comment on the 2019 Hackaday Prize Hack Chat and we’ll put that in the queue for the Hack Chat discussion.

join-hack-chatOur Hack Chats are live community events on the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, April 17, at noon, Pacific time. If time zones have got you down, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.

Open Source Company Gives Us A Peek At Financial Innards

Here at Hackaday we are willing to bet that in a universe free of all monetary constraints, many of our readers would leave their day jobs in order to pursue their hardware hobbies full time. Obviously this is only practical for a lucky minority of people (for a wide variety of reasons) but we’re willing to bet that a significant stumbling block is figuring how to do it in the first place. You quit your job, but then what? If more information about starting and sustaining small hardware business’ was available more people would take the plunge to start one. There are software companies with salary transparency but this is only part of the picture and we can’t think of many hardware companies that offer the same. What we really want is to get an image of the entire business end to end; from suppliers to COGS to salary. And we want to see it for hardware.

Years ago the first and second Hackaday Prizes captured an entrant named FarmBot whose goal was to build open source robotic farming equipment to make it easier for anyone to grow their own food. A few successful Kickstarters and years later they’ve been shipped multiple versions of the Genesis and Genesis XL robotic farming system and have a sustainable business! And now they’ve decided to open source their business operations too. Suffice to say, this provides quite an uncommon view into the guts of what makes a small open source hardware business tick. Let’s take a closer look!

There is a wealth of information exposed in the company documentation; it’s as though they took their internal wiki and made it public, which we suppose is exactly what happened. The most interesting part for our readers might be the statistics page that tracks costs and quantities for their products. This is where the magic lives. You can use to it see that so far they’ve sold 124 Genesis XL machines at an average selling price of $3,834.34 for $475,458.30 of revenue (it cost $187,200 to build their run of 200 machines). You can also see that each machine has 1,415 parts and takes about 25 hours to assemble. This page is where the true guts of the business live.

Everything else is here too. Here’s where you can learn about what vendors FarmBot uses use logistics, or power, or web infrastructure monitoring. And this is the page with the infamous salary calculation formulas if you want to guess what you’d make as an employee. Then there’s a bunch of boring but important stuff. Fulfillment processes live here, and the consumables they use to support that fulfillment are listed here (with costs!).

One reason we enjoy open source so much is that it affords a wonderful opportunity for people to learn instead of keeping the important parts of a product or process perpetually under wraps. We’re hoping that documentation like this becomes more prevalent and foster an explosion of small hardware companies to follow it.

Turning LEGO Blocks into Music with OpenCV

We’re not sure what it is, but something about LEGO and music go together like milk and cookies when it comes to DIY musical projects. [Paul Wallace]’s Lego Music project is a sequencer that uses the colorful plastic pieces to build and control sound, but there’s a twist. The blocks aren’t snapped onto anything; the system is entirely visual. A computer running OpenCV uses a webcam to watch the arrangement of blocks, and overlays them onto a virtual grid where the positions of the pieces are used as inputs for the sequencer. The Y axis represents pitch, and the X axis represents time.

Embedded below are two videos. The first demonstrates how the music changes based on which blocks are placed, and where. The second is a view from the software’s perspective, and shows how the vision system processes the video by picking out the colored blocks, then using their positions to change different values which has an effect on the composition as a whole.

Continue reading “Turning LEGO Blocks into Music with OpenCV”

An In-Depth Look at Dexter, the Robotic Arm

Dexter, a really great robot arm project, just won top honors in the 2018 Hackaday Prize, and walked away with $50,000 toward continuing their project. As a hat tip to Hackaday and the community, Haddington Dynamics, the company behind Dexter, agreed to open-source their newest version of Dexter as well. As James Newton said when accepting the trophy during the award ceremony, “because of your faith in us, because of this award, we have been moved to open-source the next generation of Dexter.” Some very clever work went into producing Dexter, and we can’t wait to see what further refinements have been made!

Dexter isn’t the only robotic arm in town, by any means. But in terms of hobbyist-level robotics, it’s by far the most complete robot arm that we’ve seen, and it includes a couple of design features that make both its positional accuracy and overall usability stand out above the rest. This is a robot arm with many of the bells and whistles of a hundred-thousand dollar robot, but on a couple-thousand dollar budget. Continue reading “An In-Depth Look at Dexter, the Robotic Arm”

Redesigning the Musical Keyboard with Light-Up Buttons

A piano’s keyboard doesn’t make sense. If you want to want to play an F major chord, just hit an F, an A, and a C — all white keys, all in a row. If you want to play a B major chord, you hit B, a D#, and an F#. One white key, then two black ones. The piano keyboard is not isomorphic, meaning chords of the same quality have different shapes. For their entry into the Hackaday Prize, [CSCircuits] and their crew are working on a keyboard that makes chords intuitive. It’s called the Kord Kontroller, and it’s a device that would also look good hooked up to Ableton.

The layout of the Kord Kontroller puts all the scale degrees arranged in the circle of fifths in the top of the keyboard. To play 90% of western music, you’ll hit one button for a I chord, move one button to the left for a IV chord, and two buttons to the right for a V chord. Chord quality is determined by the bottom of the keyboard, with buttons for flat thirds, fourths, ninths, elevenths and fourteenths replacing or augmenting notes in the chords you want to play. Since this is effectively a MIDI controller, there are buttons to change octaves and modes.

As far as hardware goes, this keyboard is constructed out of Adafruit Trellis modules that are a 4×4 grid of silicone buttons and LEDs that can be connected together and put on a single I2C bus. The enclosure wraps these buttons up into a single 3D printed grid of button holes, and with a bit of work and hot glue, everything looks as it should.

It’s an interesting musical device, and was named as a finalist in the Musical Instrument Challenge. You can check out a demo video with a jam sesh below.

Continue reading “Redesigning the Musical Keyboard with Light-Up Buttons”

TouchYou: Wearable Touch Sensor and Stimulator

Some of us might never know the touch of another human, but this project in the Hackaday Prize might just be the solution. It’s TouchYou, [Leonardo]’s idea for a wearable device that allows anyone to send tactile and multi-sensorial stimulation across the Internet. It’s touching someone over the Internet, and yes, this technology is right here today.

Inside the TouchYou is an Arduino Pro Mini connected to a Bluetooth module. This Arduino communicates with force sensors and touch sensors and also has an output for a small vibration motor. With that Bluetooth module, the TouchYou becomes an Internet of Things thing, capable of communicating to other TouchYous across the world. It’s an interconnected, worldwide touching experience, and one of the best examples of Human-Computer Interaction we’ve ever seen.

A project like this demands large touch sensors, and if you’re not aware, these are slightly expensive. That’s okay, because [Leonardo] came up with a way to create large flexible touch sensors cheaply. The process begins much like how you would make a PCB at home — print off two sides of a design in a laser printer, then wrap it around a copper foil and Kapton laminate. From there, it’s just a little bit of etching in ferric chloride and carefully soldering the flex PCB connections to fine wires.

From a great idea to some rather impressive work in building DIY flex PCBs, this is one of the better projects in the Hackaday Prize and was named as a finalist in the Human-Computer Interface Challenge.

Voice Controlled Glasses and Magnifying Lens

If you’re reading Hackaday, you’re probably intimately familiar with really small parts. 0201 resistors are tiny, and even smaller parts aren’t unheard of. The screws that go in your phone are minuscule, and a magnifying glass is really handy if you want to check out the detail on your 3D prints. While this is easy if you have good eyesight and you’re young, a lot of us don’t have that luxury and instead must rely on magnifying glasses and loupes. [Mauro]’s project for the Hackaday Prize makes wearing these loupes and lenses even easier by adding a voice-controlled servo.

The basic idea behind this device is simple — just mount a standard hobby servo to a pair of glasses and put a pair of loupes on a hinge. With a Raspberry Pi Zero W, controlling this servo is easy. The real trick here is adding voice control, and for that [Mauro] is using the Watson Speech to Text service. Moving a pair of loupes away from your eyes is as simple as setting up an account with the Watson Speech to Text service, and sending out API calls using NodeJS.

In addition to magnifying glasses, [Mauro] also has a few other ideas in mind on how to make this device even more useful. It could be used for welding goggles, for removing sunglasses as you’re driving through a tunnel, or it could even be adapted as an improved version of those crazy straws that suck liquid around the rim of plastic glasses. The potential here is almost limitless, and this is one of the better projects in this year’s Hackaday Prize.

You can see a video of these glasses in action (without the voice activation) after the break.

Continue reading “Voice Controlled Glasses and Magnifying Lens”