Bowling With Strings Attached: The People Are Split

There’s a bowling revolution in play, and not all bowlers are willing participants. In fact, a few are on strike, and it’s all because bowling alleys across America are getting rid of traditional pinsetting machines in favor of a string-based system.

In hindsight, it seems obvious to this American: attach strings to the tops of bowling pins so they can be yanked upward into holes that settle down the action so that the pins can be reset. In fact, European bowling “houses” have used string pinsetters for decades, instead of lumbering machinery that needs regular maintenance and costs several thousand dollars a month to maintain.

Continue reading “Bowling With Strings Attached: The People Are Split”

A 48 Volt Battery Pack With Carefully Balanced Cells

Many readers will have at some time or another built their own lithium-ion battery packs, whether they are using tiny cells or the huge ones found in automotive packs. A popular choice it to salvage ubiquitous 18650 cylindrical cells, as [limpkin] has with this 48 volt pack. It’s based around an off-the-shelf kit aimed at the e-bike market, but it’s much more than a simple assembly job.

Faced with a hundred salvaged cells of unknown provenance, the first thing to do was ensure that they were all balanced and showed the same voltage. Some might do this the inefficient way by hooking each one up to a charger and a programmable load, but in this case a much more radical route was taken. A huge PCB was designed with sockets for all hundred cells, connected in parallel through individual series resistors. This allowed them to balance to a common voltage before being discharged to a safe voltage for assembly. Their individual ESRs were the measured, and the best performing examples were then spot-welded into the final 13s-6p final pack.

We all use lithium-ion batteries, but how many of us know how they work?