Have Li-ion Batteries Gone Too Far?

The proliferation of affordable lithium batteries has made modern life convenient in a way we could only imagine in the 80s when everything was powered by squadrons of AAs, or has it? [Ian Bogost] ponders whether sticking a lithium in every new device is really the best idea.

There’s no doubt, that for some applications, lithium-based chemistries are a critically-enabling technology. NiMH-based EVs of the 1990s suffered short range and slow recharge times which made them only useful as commuter cars, but is a flashlight really better with lithium than with a replaceable cell? When household electronics are treated as disposable, and Right to Repair is only a glimmer in the eye of some legislators, a worn-out cell in a rarely-used device might destine it to the trash bin, especially for the less technically inclined.

[Bogost] decries “the misconception that rechargeables are always better,” although we wonder why his article completely fails to mention the existence of rechargeable NiMH AAs and AAAs which are loads better than their forebears in the 90s. Perhaps even more relevantly, standardized pouch and cylindrical lithium cells are available like the venerable 18650 which we know many makers prefer due to their easy-to-obtain nature. Regardless, we can certainly agree with the author that easy to source and replace batteries are few and far between in many consumer electronics these days. Perhaps new EU regulations will help?

Once you’ve selected a battery for your project, don’t forget to manage it if it’s a Li-ion cell. With great power density, comes great responsibility.

ice forming on surface with plus and minus pole

The Coolest Batteries You’ve Never Heard Of

Imagine cooling your building with the same principle that kept Victorian-era icehouses stocked with lake-frozen blocks, but in modern form. That’s the idea behind ice batteries, a clever energy storage hack that’s been quietly slashing cooling costs across commercial buildings. The invention works by freezing water when energy is cheap, and using that stored cold later, they turn major power hogs (air conditioning, we’re looking at you) into more efficient, cost-effective systems.

Pioneers like Nostromo Energy and Ice Energy are refining the tech. Nostromo’s IceBrick modules pack 25 kWh of cooling capacity each, install on rooftops, and cost around $250 per kWh—about half the price of lithium-ion storage. Ice Energy’s Ice Bear 40 integrates with HVAC systems, shifting up to 95% of peak cooling demand to off-peak hours. And for homes, the Ice Bear 20 replaces traditional AC units while doubling as a thermal battery.

Unlike lithium-ion, ice batteries don’t degrade chemically – their water is endlessly reusable. Combining the technology with this hack, it’s even possible in environments where water is scarce. But the trade-off? They only store cooling energy. No frozen kilowatts for your lightbulbs, just an efficient way to handle the biggest energy drain in most buildings.

Could ice batteries help decentralize energy storage? They’re already proving their worth in high-demand areas like California and Texas. Read the full report here and let us know your thoughts in the comments.

Continue reading “The Coolest Batteries You’ve Never Heard Of”

A dark warehouse contains a number of large blocky objects. A Tesla Model 3 sedan sits in the center with flames underneath and curling up the side away from the camera. A firefighter on the left side attempts to put out the fire with a fire hose.

UL Investigates The Best Way To Fight EV Fires

While electric vehicles (EVs) are generally less likely to catch fire than their internal combustion counterparts, it does still happen, and firefighters need to be ready. Accordingly, the UL Research Institute is working with reverse engineering experts Munro & Associates to characterize EV fires and find the best way to fight them.

There is currently some debate in the firefighting community over whether it’s better to try to put an EV battery fire out with water or to just let it burn. Research like this means the decision doesn’t have to fall on only anecdotal evidence. Anyone who’s worked in a lab will recognize the mix of exceedingly expensive equipment next to the borderline sketchy rigged up hacks on display, in this case the super nice thermal imagers and a “turkey burner on steroids.” The video goes through some discussion of the previous results with a Chevy Bolt, Hyundai Kona, Ford Mustang Mach E, and then we get to see them light up a Tesla Model 3. This is definitely one you shouldn’t try at home!

While the massive battery banks in modern EVs can pose unique challenges in the event of an accident, that doesn’t mean they can’t be repurposed to backup your own home.

Continue reading “UL Investigates The Best Way To Fight EV Fires”

NEMA Releases Standard For Vehicle-to-Grid Applications

Vehicle-to-grid (V2G) has been hailed as one of the greatest advantages of electrifying transportation, but has so far remained mostly in the lab. Hoping to move things forward, the National Electrical Manufacturers Association (NEMA) has released the Electric Vehicle Supply Equipment (EVSE) Power Export Permitting Standard.

The new standards will allow vehicle manufacturers and charger (EVSE) suppliers to have a unified blueprint for sending power back and forth to the grid or the home, which has been a bit of a stumbling block so far toward adoption of a seemingly simple, but not easy, technology. As renewables make up a larger percentage of the grid, using the increasing number of EVs on the road as battery backup is a convenient solution.

While the standard will simplify the technology side of bidirectional charging, getting vehicle owners to opt into backing up the grid will depend on utilities and regulators developing attractive remuneration plans. Unfortunately, the standard itself is paywalled, but NEMA says the standard “could put money back in electric vehicle owners’ pockets by making it easier for cars to store energy at night or when turned off and then sell power back to grids at a profit during peak hours.”

We’ve covered some of the challenges and opportunities of V2G systems in the past and if you want something a little smaller scale, how about using a battery that was once in a vehicle to backup your own home?

Improving Aluminium-Ion Batteries With Aluminium-Fluoride Salt

There are many rechargeable battery chemistries, each with their own advantages and disadvantages. Currently lithium-ion and similar (e.g. Li-Po) rule the roost due to their high energy density at least acceptable number of recharge cycles, but aluminium-ion (Al-ion) may become a more viable competitor after a recently published paper by Chinese researchers claims to have overcome some of the biggest hurdles. In the paper as published in ACS Central Science by [Ke Guo] et al. the use of solid-state electrolyte, a charge cycle endurance beating LiFePO4 (LFP) and excellent recyclability are claimed.

It’s been known for a while that theoretically Al-ion batteries can be superior to Li-ion in terms of energy density, but the difficulty lies in the electrolyte, including its interface with the electrodes. The newly developed electrolyte (F-SSAF) uses aluminium-fluoride (AlF3) to provide a reliable interface between the aluminium and carbon electrodes, with the prototype cell demonstrating 10,000 cycles with very little cell degradation. Here the AlF3 provides the framework for the EMIC-AlCl3 electrolyte. FEC (fluoroethylene carbonate) is introduced to resolve electrolyte-electrode interface issues.

A recovery of >80% of the AlF3 during a recycling phase is also claimed, which for a prototype seems to be a good start. Of course, as the authors note in their conclusion, other frameworks than AlF3 are still to be investigated, but this study brings Al-ion batteries a little bit closer to that ever-elusive step of commercialization and dislodging Li-ion.

AA Battery Performances Tested, So Get The Most For Your Money

[Project Farm] has a video in which a wide variety of AA cells are analyzed and compared in terms of capacity, internal resistance, ability to deliver voltage under load, and ability to perform in sub-freezing temperatures. Alkaline, lithium, and even some mature rechargeable cells with a couple thousand cycles under their belt were all compared. There are a few interesting results that will can help you get the most from your money the next time you’re battery shopping.

The video embedded below demonstrates a set of tests that we recommend you check out, but the short version is that more expensive (non-rechargeable) lithium cells outperform their alkaline peers, especially when it comes to overall longevity, ability to perform under high-drain conditions, and low temperatures. Lithium cells also cost more, but they’re the right choice for some applications.

Some brands performed better and others worse, but outside of a couple stinkers most were more or less comparable. Price however, was not.

As for how different brands stack up against one another, many of them are more or less in the same ballpark when it comes to performance. Certainly there are better and worse performers, but outside of a couple of stinkers the rest measure up reasonably well. Another interesting finding was that among rechargeable cells that were all several years (and roughly 2,200 charge-discharge cycles) old, a good number of them still performed like new.

Probably the single most striking difference among the different cells is cost — and we’re not just talking about whether lithium versus alkaline AAs are more cost-effective in the long run. Some brands simply cost twice as much (or more!) than others with comparable performance. If you’re in a hurry, jump to [Project Farm] presenting the final ranked results at 19:45 in.

Relying on brand recognition may save you from buying complete junk, but it’s clearly not the most cost-effective way to go about buying batteries.  These findings are similar to an earlier effort at wide-scale battery testing which also determined that factoring in price-per-cell was too significant to ignore.

Continue reading “AA Battery Performances Tested, So Get The Most For Your Money”

Playing Around With The MH-CD42 Charger Board

If you’ve ever worked with adding lithium-ion batteries to one of your projects, you’ve likely spent some quality time with a TP4056. Whether you implemented the circuit yourself, or took the easy way out and picked up one of the dirt cheap modules available online, the battery management IC is simple to work with and gets the job done.

But there’s always room for improvement. In a recent video, [Det] and [Rich] from Learn Electronics Repair go over using a more modern battery management board that’s sold online as the MH-CD42. This board, which is generally based on a clone of the IP5306, seems intended for USB battery banks — but as it so happens, plenty of projects that makers and hardware hackers work on have very similar requirements.

So not only will the MH-CD42 charge your lithium-ion cells when given a nominal USB input voltage (4.5 – 5 VDC), it will also provide essential protections for the battery. That means looking out for short circuits, over-charge, and over-discharge conditions. It can charge at up to 2 A (up from 1 A on the TP4056), and includes a handy LED “battery gauge” on the board. But perhaps best of all for our purposes, it includes the necessary circuitry to boost the output from the battery up to 5 V.

If there’s a downside to this board, it’s that it has an automatic cut-off for when it thinks you’ve finished using it; a feature inherited from its USB battery bank origins. In practice, that means this board might not be the right choice for projects that aren’t drawing more than a hundred milliamps or so.

Continue reading “Playing Around With The MH-CD42 Charger Board”