
[Łukasz Kaiser] programmed a computer to play Tic-tac-toe. That doesn’t sound very remarkable until you realize he never told his computer the rules of Tic-tac-toe. The computer learned the rules by itself after watching a video of two people playing the game (link to actual paper – PDF warning).
[Łukasz] wrote a small program in C++ to recognize the placement of objects on a Tic-tac-toe, Connect 4, and Breakthough board. This program sifts through winning and losing games along with illegal moves to generate a Lambda calculus-like rule set for the relevant game. Even though [Łukasz] has only programmed a computer to learn simple games such as Tic-tac-toe, Connect 4, and Breakthrough, he plans to move up to more complex games such as Chess.
The fact that [Łukasz] programmed a computer to actually learn the rules of a game gives us pause; in one of the fabulous lectures [Richard Feynman] gave to freshman physics students in 1964, the subject of Chess came up. [Feynman] drew parallels between learning Chess and performing research. Every move is hypothesis testing, and when a very strange move occurs – castling, en passant, and the promotion of a pawn, for instance – the theory of the rules of the game must be reworked. Likewise, when extremely strange stuff happens in physics – particle/wave duality, and the existence of black holes – scientific theory is advanced.
Yes, teaching a computer to learn the rules of Tic-tac-toe may seem irrelevant, but given the same learning process can be applied to other fields such as medicine, economics, and just about every science, it’s not hard to see how cool [Łukasz]’ work is.
via extremetech


