Steve Evans Passes Away, Leaves an Inspiring Legacy

It is with great sadness that Hackaday learns of the passing of Steve Evans. He was one of the creators of Eyedrivomatic, the eye-controlled wheelchair project which was awarded the Grand Prize during the 2015 Hackaday Prize.

News of Steve’s passing was shared by his teammate Cody Barnes in a project update on Monday. For more than a decade Steve had been living with Motor Neurone Disease (MND). He slowly lost the function of his body, but his mind remained intact throughout. We are inspired that despite his struggles he chose to spend his time creating a better world. Above you can see him test-driving an Eyedrivomatic prototype which is the blue 3D printed attachment seen on the arm of his chair.

The Eyedrivomatic is a hardware adapter for electric wheelchairs which bridges the physical controls of the chair with the eye-controlled computer used by people living with ALS/MND and in many other situations. The project is Open Hardware and Open Source Software and the team continues to work on making Eyedriveomatic more widely available by continuing to refine the design for ease of fabrication, and has even begun to sell kits so those who cannot build it themselves still have access.

The team will continue with the Eyedrivomatic project. If you are inspired by Steve’s story, now is a great time to look into helping out. Contact Cody Barnes if you would like to contribute to the project. Love and appreciation for Steve and his family may be left as comments on the project log.

Behold the Many Builds of World Create Day

World Create Day was huge this year. Over 70 different groups on six continents got together on Saturday to work on projects as a global Hackaday community.

LearnOBots Labs in Islamabad, Pakistan

Perhaps the best documented World Create Day so far comes from our friends in Pakistan. LearnOBots hosted a day-long extravaganza of projects on everything from home automation, to wearable computing.

[Haziq] and [Rafay] didn’t just build an IoT lighting project together, they took the time to present their work in this excellent demo video. The build connects Arduino, a Bluetooth module, and a relay to drive the lightbulbs all controlled by an app they built with MIT app inventor to help a friend who is stuck on bed rest.

Browse through the event logs LearnOBots has posted and see a lot more of what went on. This image shows work on wearable interfaces. Fabric markers are used to draw out interesting designs which are then given interactivity using conductive thread and Lilypad boards. We also get a look at a user interface for Summer camp sign-up that was made using Raspberry Pi Zero and a 7″ screen. Other groups were working on custom input projects using Makey Makey and Arduino. The image at the top of this article shows some of the LearnOBots crew with a World Create Day poster, neat!

Appalachian Forge Works in Newland, North Carolina

World Create Day at Appalachian Forge Works brought a baby guitar amp to life on World Create Day. The basic circuit is built around an LM386 amp. It was designed using a whiteboard schematic before moving to the breadboard for prototyping.

For some folks that might be enough of a hacking sessions, but the effort didn’t stop there. An enclosure was designed and laser cut from plywood. This included etching labels for the power button and volume knob. There’s even fabric mesh for the speaker grill for a completely finished look that’s a showpiece even when not belting out some Black Keys.

Baltimore Hackerspace Breaks Out the Welder

Tiny wheels, big motors, and square tubing — it’s almost ready to hit the test track for some time trials. The gang over at Baltimore Hackerspace spent their World Create Day fabricating what surely will be the next championship entry in the Power Racing Series.

After this picture was snapped the team got to work on the control electronics for the racer, which end up in a transparent box between the motors. The team didn’t have time to install a driver’s seat but that didn’t prevent a late night test run.

Sounds of Sewing and Embedded Tinkering at The Bodgery in Madison

I celebrated World Create Day at The Bodgery in Madison, Wisconsin. There were a surprising variety of projects worked on at the meetup, at least three of them using something new to me:

[Josh Lange] brought along the driver boards he’s been designing. I was delighted to see the batteries used in the project. I didn’t realize you could buy 18650 Lithium cells in a consumer-friendly package (like AA batteries but larger) and there are battery holders to go along with them. I’m used to seeing these pulled out of old laptop batteries.

Hackaday’s own [Bob Baddeley] was on hand, working feverishly at the sewing machine. He’s fabricating an entire line of Wacky Waving Inflatable Arm Flailing Tubemen costumes. They use those springy laundry baskets as the internal skeleton. Also being worked on at The Bodgery was an NES expansion port project that will make a custom cartridge hosting a Raspberry Pi Zero utilize the NES video hardware without altering the stock hardware. We also had a fun time working on embedded basics with a software engineer who is getting up to speed with embedded.

Tell Us About Your World Create Day!

We want to hear about what you did on World Create Day. We’ll be covering more events in the coming days so make sure you add your pictures and stories to your WCD event page. Event organizers get a special treat for making that effort. But mainly we want to show off the excitement and ingenuity that was abuzz around the world this past weekend.

A Cool Mist that Dries Your Clothes

This one is both wild enough to be confused as a conspiracy theory and common sense enough to be the big solution staring us in the face which nobody realized. Until now. Oak Ridge National Laboratory and General Electric (GE), working on a grant from the US Department of Energy (DOE), have been playing around with new clothes dryer technology since 2014 and have come with something new and exciting. Clothes dryers that use ultrasonic traducers to remove moisture from garments instead of using heat.

If you’ve ever seen a cool mist humidifier you’ll know how this works. A piezo element generates ultrasonic waves that atomize water and humidify the air. This is exactly the same except the water is stored in clothing, rather than a reservoir. Once it’s atomized it can be removed with traditional air movement.

This is a totally obvious application of the simple and inexpensive technology — when the garment is laying flat on a bed of transducers. This can be implemented in a press drying system where a garment is laid flat on a bed or transducers and another bed hinges down from above. Poof, your shirt is dry in a few seconds.

But individual households don’t have these kinds of dryers. They have what are called drum dryers that spin the clothes. Reading closely, this piece of the puzzle is still to come:

They play [sic] to scale-up the technoloogy to press drying and eventually a clothes dryer drum in the next five months.

We look at this as having a similar technological hurdle as wireless electricity. There must be an inverse-square law on the effect of the ultrasonic waves to atomize water as the water moves further away from the transducers. It that’s the case, tranducers on the circumference of a drum would be inefficient at drying the clothing toward the center. This slide deck hints that that problem is being addressed. It talks about only running the transducers when the fabric is physically coupled with the elements. It’s an interesting application and we hope that it could work in conjunction with traditional drying methods to boost energy savings, even if this doesn’t pan out as a total replacement.

With a vast population, cost adds up fast. There are roughly 125 M households in the United States and the overwhelming majority of them use clothes dryers (while many other parts of the world have a higher percentage who hang-dry their clothing). The DOE estimates $9 billion a year is spent on drying clothes in the US. Reducing that number by even 1/10th of 1% will pay off more than tenfold the $880,000 research budget that went into this. Of course, you have to outfit those households with new equipment which will take at least 8-12 years through natural attrition, even if ultrasonics hit the market as soon as possible.

Continue reading “A Cool Mist that Dries Your Clothes”

Don’t Try This at Home is Cliché for a Reason

Oh, for cryin’ out loud. That’s the last straw. We’ve seen one dangerous YouTube video too many. Are we honestly cursed with a false feedback system that unequitably rewards dangerous behavior in online videos? Obviously the answer is ‘yes’. Now the real question becomes, can we do anything about it?

Professional Driver on a Closed Course

Marketing is all about putting something in front of a consumer and getting their brain to go “awesome!”. The fast, loud, shiny, burny, and sharp things are all on the table for that task. It’s the primal part of your brain that gives you jolt, as if your amygdala forgot how to run from sabertooths (saberteeth?) and learned how to like and subscribe.

Back in the day, people were hurt and even killed when replicating stunts they saw done on television. To protect from litigation, companies started adding disclaimers — Don’t Try this at Home or my favorite: Professional Driver on a Closed Course.

But the thing is, commercials are big business. If someone gets hurt, there’s money to be had by assigning blame in a court of law. When the ability to produce and distribute video content was democratized by the coming of the Internet we lost those warnings and the common sense that went with them.

Going way back to this remote-control-a-real-car hack in 2009 I haven’t been able to shake the lack of consideration for danger in a project like this. I included it in the title, which ends with “(dangerously)”. While I wasn’t taken to task in the comments for that title, I have been chided for advocating for things as controversial as helmets when strapping your body to a moving object. Do a Ctrl-F on “helmet” in this article to see what I mean.

The people pulling off these hacks were doing it because it felt awesome and they wanted to document how that felt. They weren’t stars, they were hackers and the world mostly ignored them except in places like Hackaday. We might debate the lack of safety measures but most assumed anyone with skills to do this would take a beat to consider the risks. This was probably a false assumption.

It’s All About the Subs

Things have gotten worse since then. I can’t blame all of this on YouTube, but I’m going to try. One day, YouTube changed everything. They put together a perfect mix of easy uploading, great discoverability, and (most importantly) advertising revenue sharing. For some people, this became a business and not just a way to connect with the rest of the hacker community.

This is the rise of the subscriber base. It’s a vicious cycle — you need more people to like and subscribe so that their influence will push your channel to more people to like and subscribe. The problem is, the fastest way to this is that tricky amygdala again. For some, this is being funny, but for others this is speed, fireballs, and loud bangs, with no regard for life, limb, or eyeball.

We’re Far From Blameless

I like fireballs and fast cars as much as the next person. And we’ve certainly run a lot of articles on the escalatingly dangerous hacks out there for all to see. For instance, we’ve covered several hacks from [kreosan], like microwaving things outside of a microwave and then building a microwave gun.

Pyro Build
Short sleeves and flamethrowers. What could go wrong?

But even the more mainstream content appears to be getting more and more dangerous. Our beloved [Colin Furze] is guilty of dangerous behavior. Not only did he burn himself testing a jet engine out without any safety gear, but turned the aftermath into another ad-supported video.

Which brings me to the straw that broke the camel’s back. Here’s a hack that’s based on the idea of hurting people. It’s what is (luckily) a crappy robot designed to recognize faces and shine lasers into any eyes it detects. Literally it’s conceived to shoot your eyes out. It’s using a red laser that likely won’t cause eye damage unless you intentionally stare into it without blinking, but that’s not discussed in the video, and someone who doesn’t know better replicating this with a different laser could easily cause irreparable damage to their sight.

Rocket Scientists Use Common Sense and So Should You

I was going to use the heading “This Isn’t Rocket Science”, but you don’t see rocket scientists testing new engine designs by lighting a fuse as they run away giggling in short sleeves and flip-flops. Those brilliantly intelligent people are tucked safely in a bunker at a safe distance with their hands hovering over the emergency kill switch as fire fighting equipment hangs out at arms reach. Rocket scientists know a lot about safety and so should you.

This is simple. We don’t have to invent anything to add safety to our hacks. Use common sense. Dress appropriately for your demo — as the situation dictates use reasonable fire-resistant clothing, helmet, etc. Wear protective glasses, laser spec’d goggles, and ear plugs; each whenever called for. Take fumes and particulates seriously and wear respiratory gear. Keep a fire extinguisher around. And if you’re making a video or posting images about it — which you should definitely do — snap a picture or give us a quick video cut to the safety precautions you’ve chosen.

I still want to see awesome projects on YouTube. But I also want to see the trend towards danger for clicks stopped. Let’s do dangerous stuff safely. And let’s be conspicuous about those safety measures. That combination is truly awesome.

Now get off my lawn, and wear your seat belt while doing so.

Up, Up, Up: $2k More Seed Funding for Projects that Matter

Getting a project off the ground often means an up-front investment in parts. Hackaday is upping our efforts to smooth out that obstacle for those who want to Build Something That Matters. Seed funding for the 2017 Hackaday Prize is simple, enter your design plans, share it far and wide so that a lot of people will show their admiration with a ‘like’ on the project page. You get a dollar for each like to help jump-start the build phase.

This year has started off like a rocket. Last week we passed the $4000 seed funding limit even though there’s still two weeks left in the Design Your Concept round. We’re raising the pot to a total of $6000. That means there’s more up for grabs. Enter your project now. If you’ve already done that, polish up your presentation and show it around to your friends and on social media. You’ll get a dollar for every like up to $200 max, or until we undoubtedly reach the new limit once again. Don’t delay, it’s time to Build Something that Matters!

Organizers of World Create Day are Getting Something Special

World Create Day is this Saturday, and events are being organized all over the world. Anyone can set one of these up, and it’s not too late for you to have one in your own town — just fill out this form to become a host.

We’re sending swag out for everyone that gets together and hacks on World Create Day, things like stickers and a few other goodies. This year we’ve decided on a special thank you to the local organizers. Check out the mockups for these T-shirts. Our Art Director, Joe Kim, has created something truly amazing with this year’s images. You can only get one if you are the meetup organizer and you post pictures and a bit of back story about your World Create Day experience on your event page.

If you’ve been on the fence about being a host, take the leap and give it a try! It’s great fun to get together with other Hackaday folks in real life, and you’ll get this super-rare Hackaday shirt out of it.

PassivDom: Mobile Homes for Millenials

In many parts of the world, living in a trailer has gained a social stigma. We’re talking about a rectangular building placed on three wheels and towed to your preferred plot of land. It’s going to take a lot to break that social stigma, but this is a pretty sweet attempt.

PassivDom is an off-grid home. It sidesteps the electrical grid as well as water and sewer service. It’s marketed as utilizing revolutionary breakthrough in wall insulation which they claim makes it very easy to heat and cool. In addition to this self-sustaining angle, it taps into the tiny home movement with a footprint of just 36 m2 (4 m by 9 m; about 118 390 ft2 or 13′ by 30′).

For this to make sense you really need to get the “Autonomous” model, the only one that is designed for “off-grid” living and comes with solar panels and battery storage plus water storage and purification. That’ll set you back 59,900 € (about $63,461 USD) but hey, it does come with “high quality minimalistic furniture” which the best way we can think of to serve Ikea nesting instinct without saying the brand name. Yep, this ticks all the “marketing to millennials” boxes. We’re kind of surprised it’s not doing crowdfunding.

So where’s the hack? Obviously this is a hard sell at 1,664 €/m($538 $163/ft2). A project of this size and scope is well within the purview of a single, motivated hacker, and arguably a weekend project for a well-skilled team from a hackerspace. Tiny Houses started as a build-it yourself so that’s already solved. We’ve seen what it takes for hackers to add solar to their RVs, and experiments in home-built power walls. Water storage and purification is already solved and quite affordable at the home store.

Has anyone built their own off-grid tiny house? If so, let us know what went into it. If not, what are you waiting for?