Prototyping, Making A Board For, And Coding An ARM Neural Net Robot

[Sean Hodgins]’s calls his three-part video series an Arduino Neural Network Robot but we’d rather call it an enjoyable series on prototyping, designing a board with surface mount parts, assembling it, and oh yeah, putting a neural network on it, all the while offering plenty of useful tips.

In part one, prototype and design, he starts us out with a prototype using a breadboard. The final robot isn’t on an Arduino, but instead is on a custom-made board built around an ARM Cortex-M0+ processor. However, for the prototype, he uses a SparkFun SAM21 Arduino-sized board, a Pololu DRV8835 dual motor driver board, four photoresistors, two motors, a battery, and sundry other parts.

Once he’s proven the prototype works, he creates the schematic for his custom board. Rather than start from scratch, he goes to SparkFun’s and Pololu’s websites for the schematics of their boards and incorporates those into his design. From there he talks about how and why he starts out in a CAD program, then moves on to KiCad where he talks about his approach to layout.

Part two is about soldering and assembly, from how he sorts the components while still in their shipping packages, to tips on doing the reflow in a toaster oven, and fixing bridges and parts that aren’t on all their pads, including the microprocessor.

In Part three he writes the code. The robot’s objective is simple, run away from the light. He first tests the photoresistors without the motors and then writes a procedural program to make the robot afraid of the light, this time with the motors. Finally, he writes the neural network code, but not before first giving a decent explanation of how the neural network works. He admits that you don’t really need a neural network to make the robot run away from the light. But from his comparisons of the robot running using the procedural approach and then the neural network approach, we think the neural network one responds better to what would be the in-between cases for the procedural approach. Admittedly, it could be that a better procedural version could be written, but having the neural network saved him the trouble and he’s shown us a lot that can be reused from the effort.

In case you want to replicate this, [Sean]’s provided a GitHub page with BOM, code and so on. Check out all three parts below, or watch just the parts that interest you.

Continue reading “Prototyping, Making A Board For, And Coding An ARM Neural Net Robot”

Google’s Inception Sees This Turtle as a Gun; Image Recognition Camouflage

The good people at MIT’s Computer Science and Artificial Intelligence Laboratory [CSAIL] have found a way of tricking Google’s InceptionV3 image classifier into seeing a rifle where there actually is a turtle. This is achieved by presenting the classifier with what is called ‘adversary examples’.

Adversary examples are a proven concept for 2D stills. In 2014 [Goodfellow], [Shlens] and [Szegedy] added imperceptible noise to the image of a panda that from then on was classified as gibbon. This method relies on the image being undisturbed and can be overcome by zooming, blurring or rotating the image.

The applicability for real world shenanigans has been seriously limited but this changes everything. This weaponized turtle is a color 3D print that is reliably misclassified by the algorithm from any point of view. To achieve this, some knowledge about the classifier is required to generate misleading input. The image transformations, such as rotation, scaling and skewing but also color corrections and even print errors are added to the input and the result is then optimized to reliably mislead the algorithm. The whole process is documented in [CSAIL]’s paper on the method.

What this amounts to is camouflage from machine vision. Assuming that the method also works the other way around, the possibility of disguising guns (or anything else) as turtles has serious implications for automated security systems.

As this turtle targets the Inception algorithm, it should be able to fool the DIY image recognition talkbox that Hackaday’s own [Steven Dufresne] built.

Thanks to [Adam] for the tip.

Listen to the Netherworld with Artificial Intelligence

It’s that time of year again, and with Halloween arguably being the hacker’s perfect holiday, we’re starting to see a tick up in projects with a spooky theme. Most seem to do with making some otherwise tame Halloween decorations scarily awesome, but this is different — using artificial intelligence to search for ghosts.

It seems like [Matt Reed]’s “DeepWhisper” project is meant to be taken as light-hearted fun for the spooky season, but there may be a touch of seriousness to his efforts to listen in on ghostly conversations. The principle behind this is electronic voice phenomena (EVP), whereby the metabolically and/or dimensionally challenged are purported to influence electronic systems, resulting in heavily processed audio clips that seem to have a whispered endearment from the departed or a threat from a malevolent spirit. DeepWhisper takes this a step further by using a Raspberry Pi to feed audio into the Google Cloud Speech API for analysis. If anything is whispered in one of the 110 or so languages Google knows, it’ll get displayed on a screen. [Matt] plans to set DeepWhisper up in the aptly-named Butchertown section of Nashville and live-stream the results next week.

It’ll be interesting to see what Google’s neural network makes out of the random noise it will probably only ever hear. And [Matt] is planning on releasing his code for all to see, so there may be some valuable cloud techniques to learn from DeepWhisper. But in the unlikely event that he does discover ghosts, it’s nice to know you can have the tools and the talent to bust ’em.

Continue reading “Listen to the Netherworld with Artificial Intelligence”

Artificial Intelligence at the Top of a Professional Sport

The lights dim and the music swells as an elite competitor in a silk robe passes through a cheering crowd to take the ring. It’s a blueprint familiar to boxing, only this pugilist won’t be throwing punches.

OpenAI created an AI bot that has beaten the best players in the world at this year’s International championship. The International is an esports competition held annually for Dota 2, one of the most competitive multiplayer online battle arena (MOBA) games.

Each match of the International consists of two 5-player teams competing against each other for 35-45 minutes. In layman’s terms, it is an online version of capture the flag. While the premise may sound simple, it is actually one of the most complicated and detailed competitive games out there. The top teams are required to practice together daily, but this level of play is nothing new to them. To reach a professional level, individual players would practice obscenely late, go to sleep, and then repeat the process. For years. So how long did the AI bot have to prepare for this competition compared to these seasoned pros? A couple of months.

Continue reading “Artificial Intelligence at the Top of a Professional Sport”

AI: This Decade’s Worst Buzz Word

In hacker circles, the “Internet of Things” is often the object of derision. Do we really need the IoT toaster? But there’s one phrase that — while not new — is really starting to annoy me in its current incarnation: AI or Artificial Intelligence.

The problem isn’t the phrase itself. It used to mean a collection of techniques used to make a computer look like it was smart enough to, say, play a game or hold a simulated conversation. Of course, in the movies it means HAL9000. Lately, though, companies have been overselling the concept and otherwise normal people are taking the bait.

The Alexa Effect

Not to pick on Amazon, but all of the home assistants like Alexa and Google Now tout themselves as AI. By the most classic definition, that’s true. AI techniques include matching natural language to predefined templates. That’s really all these devices are doing today. Granted the neural nets that allow for great speech recognition and reproduction are impressive. But they aren’t true intelligence nor are they even necessarily direct analogs of a human brain.

Continue reading “AI: This Decade’s Worst Buzz Word”

Raspberry Pi AI Plays Piano

[Zack] watched a video of [Dan Tepfer] using a computer with a MIDI keyboard to do some automatic fills when playing. He decided he wanted to do better and set out to create an AI that would learn–in real time–how to insert style-appropriate tunes in the gap between the human performance.

If you want the code, you can find it on GitHub. However, the really interesting part is the log of his experiences, successes, and failures. If you want to see the result, check out the video below where he riffs for about 30 seconds and the AI starts taking over for the melody when the performer stops.

Continue reading “Raspberry Pi AI Plays Piano”

AI Watches You Sleep; Knows When You Dream

If you’ve never been a patient at a sleep laboratory, monitoring a person as they sleep is an involved process of wires, sensors, and discomfort. Seeking a better method, MIT researchers — led by [Dina Katabi] and in collaboration with Massachusetts General Hospital — have developed a device that can non-invasively identify the stages of sleep in a patient.

Approximately the size of a laptop and mounted on a wall near the patient, the device measures the minuscule changes in reflected low-power RF signals. The wireless signals are analyzed by a deep neural-network AI and predicts the various sleep stages — light, deep, and REM sleep — of the patient, negating the task of manually combing through the data. Despite the sensitivity of the device, it is able to filter out irrelevant motions and interference, focusing on the breathing and pulse of the patient.

What’s novel here isn’t so much the hardware as it is the processing methodology. The researchers use both convolutional and recurrent neural networks along with what they call an adversarial training regime:

Our training regime involves 3 players: the feature encoder (CNN-RNN), the sleep stage predictor, and the source discriminator. The encoder plays a cooperative game with the predictor to predict sleep stages, and a minimax game against the source discriminator. Our source discriminator deviates from the standard domain-adversarial discriminator in that it takes as input also the predicted distribution of sleep stages in addition to the encoded features. This dependence facilitates accounting for inherent correlations between stages and individuals, which cannot be removed without degrading the performance of the predictive task.

Anyone out there want to give this one a try at home? We’d love to see a HackRF and GNU Radio used to record RF data. The researchers compare the RF to WiFi so repurposing a 2.4 GHz radio to send out repeating uniformed transmissions is a good place to start. Dump it into TensorFlow and report back.

Continue reading “AI Watches You Sleep; Knows When You Dream”