The central solenoid taking shape in the ITER assembly hall.

What’s Sixty Feet Across And Superconducting?

What’s sixty feet (18.29 meters for the rest of the world) across and superconducting? The International Thermonuclear Experimental Reactor (ITER), and probably not much else.

The last parts of the central solenoid assembly have finally made their way to France from the United States, making both a milestone in the slow development of the world’s largest tokamak, and a reminder that despite the current international turmoil, we really can work together, even if we can’t agree on the units to do it in.

A cutaway diagram of the ITER tokamak showing the central solenoid
The central solenoid is in the “doughnut hole” of the tokamak in this cutaway diagram. Image: US ITER.

The central solenoid is 4.13 m across (that’s 13′ 7″ for burger enthusiasts) sits at the hole of the “doughnut” of the toroidal reactor. It is made up of six modules, each weighing 110 t (the weight of 44 Ford F-150 pickup trucks), stacked to a total height of 59 ft (that’s 18 m, if you prefer). Four of the six modules have been installed on-site, and the other two will be in place by the end of this year.

Each module was produced ITER by US, using superconducting material produced by ITER Japan, before being shipped for installation at the main ITER site in France — all to build a reactor based on a design from the Soviet Union. It doesn’t get much more international than this!

This magnet is, well, central to the functioning of a tokamak. Indeed, the presence of a central solenoid is one of the defining features of this type, compared to other toroidal rectors (like the earlier stellarator or spheromak). The central solenoid provides a strong magnetic field (in ITER, 13.1 T) that is key to confining and stabilizing the plasma in a tokamak, and inducing the 15 MA current that keeps the plasma going.

When it is eventually finished (now scheduled for initial operations in 2035) ITER aims to produce 500 MW of thermal power from 50 MW of input heating power via a deuterium-tritium fusion reaction. You can follow all news about the project here.

While a tokamak isn’t likely something you can hack together in your back yard, there’s always the Farnsworth Fusor, which you can even built to fit on your desk.

Can We Ever Achieve Fusion Power?

Fusion power has long held the promise of delivering near-endless energy without as many unfortunate side effects as nuclear fission. But despite huge investment and some fascinating science, the old adage about practical power generation being 20 years away seems just as true as ever. But is that really the case? [Brian Potter] has written a review article for Construction Physics, which takes us through the decades of fusion research.

For a start, it’s fascinating to learn about the many historical fusion process, the magnetic pinch, the stelarator, and finally the basis of many modern reactors, the tokamak. He demonstrates that we’ve made an impressive amount of progress, but at the same time warns against misleading comparisons. There’s a graph comparing fusion progress with Moore’s Law that he debunks, but he ends on a positive note. Who knows, we might not need a Mr. Fusion to arrive from the future after all!

Fusion reactors are surprisingly easy to make, assuming you don’t mind putting far more energy in than you’d ever receive in return. We’ve featured more than one Farnsworth fusor over the years.