Determine Fundamental Constants With LEDs And A Multimeter

There are (probably) less than two dozen fundemental constants that define the physics of our universe. Determining the value of them might seem like the sort of thing for large, well funded University labs, but many can be determined to reasonable accuracy on the benchtop, as [Marb’s Lab] proves with this experiment to find the value of Planck’s Constant.

[Marv’s Lab] setup is on a nice PCB that uses a rotary switch to select between 5 LEDs of different wavelengths, with banana plugs for the multi-meter so he can perform a linear regression on the relation between energy and frequency to find the constant. He’s also thoughtfully put connectors in place for current measurement, so the volt-current relationship of the LEDs can be characterized in a second experiment. Overall, this is a piece of kit that would not be out of place in any high school or undergraduate physics lab. Continue reading “Determine Fundamental Constants With LEDs And A Multimeter”

Measuring Planck’s Constant (Again)

There are many well-known physical constants, but it always interests us when someone can approximately measure them using equipment you probably have. We could pretend it is because we want to help kids do science projects, but who are we really kidding? It is just the cool factor. [Stoppi] shows usĀ several neat ways to measure Planck’s constant (German language, Google Translate link) using things like LEDs, solar cells, and common test equipment. If you don’t want to translate the web page, you can also see the setup and the math behind it in the video below.

If complex math triggers you, this might not be the video for you. The particular test in the video does require a very low current measurement, but that’s not very hard to arrange these days. There are actually several methods covered in the post, and one of them uses one of those familiar “component testers” that has an Atmel CPU, a socket, and an LCD. These can measure the forward current of LEDs, and if you know the wavelength of the LED, you can determine the constant. There’s even a custom device that integrates several LEDs to do the job.

Continue reading “Measuring Planck’s Constant (Again)”

The Ultraviolet Catastrophe

As the light of the 20th century was peeking over the horizon, a young physicist by the name of Max Planck was taking to heart some career advice he had received while he attended Munich University in Germany. With the recent discovery of thermodynamics, there wasn’t much left in physics to know, or so his adviser thought. Hindsight is indeed 20/20.

It turns out that Planck was an expert at thermodynamics. Having mastered the subject gave him some leverage to use against a growing group of physicists known as atomists who were using statistical models along with so called ‘atoms’ to predict experimental outcomes. Atomists believed that matter was composed of discrete units. Planck believed the world was continuous and could not be divided into any type of discrete component. And he would draw the second law of thermodynamics from his holster and put this atom idea in the clay.

Continue reading “The Ultraviolet Catastrophe”