A finger points at a diagram of a battery with two green bars. Above it is another battery with four smaller green bars with a similar area to the first battery's two. The bottom batter is next to a blue box with a blue wave emanating from it and the top battery has a red box with a red wave emanating from it. Below the red wave is written "2x wavelength" and below the top battery is "1/2 energy in a photon."

What Are Photons, Anyway?

Photons are particles of light, or waves, or something like that, right? [Mithuna Yoganathan] explains this conundrum in more detail than you probably got in your high school physics class.

While quantum physics has been around for over a century, it can still be a bit tricky to wrap one’s head around since some of the behaviors of energy and matter at such a small scale aren’t what we’d expect based on our day-to-day experiences. In classical optics, for instance, a brighter light has more energy, and a greater amplitude of its electromagnetic wave. But, when it comes to ejecting an electron from a material via the photoelectric effect, if your wavelength of light is above a certain threshold (bigger wavelengths are less energetic), then nothing happens no matter how bright the light is.

Scientists pondered this for some time until the early 20th Century when Max Planck and Albert Einstein theorized that electromagnetic waves could only release energy in packets of energy, or photons. These quanta can be approximated as particles, but as [Yoganathan] explains, that’s not exactly what’s happening. Despite taking a few classes in quantum mechanics, I still learned something from this video myself. I definitely appreciate her including a failed experiment as anyone who has worked in a lab knows happens all the time. Science is never as tidy as it’s portrayed on TV.

If you want to do some quantum mechanics experiments at home (hopefully with more luck than [Yoganathan]), then how about trying to measure Planck’s Constant with a multimeter or LEGO? If you’re wondering how you might better explain electromagnetism to others, maybe this museum exhibit will be inspiring.

Continue reading “What Are Photons, Anyway?”

You Can Build A Little Car That Goes Farther Than You Push It

Can you build a car that travels farther than you push it? [Tom Stanton] shows us that you can, using a capacitor and some nifty design tricks.

[Tom]’s video shows us the construction of a small 3D printed trike with a curious drivetrain. There’s a simple generator on board, which charges a capacitor when the trike is pushed along the ground. When the trike is let go, however, this generator instead acts as a motor, using energy stored in the capacitor to drive the trike further.

When put to the test by [Tom], both a freewheeling car and the capacitor car are pushed up to a set speed. But the capacitor car goes farther. The trick is simple – the capacitor car can go further because it has more energy. But how?

It’s all because more work is being done to push the capacitor car up to speed. It stores energy in the capacitor while it’s being accelerated by the human pushing it. In contrast, after being pushed, the freewheeling car merely coasts to a stop as it loses kinetic energy. However, the capacitor car has similar kinetic energy plus the energy stored in its capacitor, which it can use to run its motor.

It’s a neat exploration of some basic physics, and useful learning if you’ve ever wondered about the prospects of perpetual motion machines.

Continue reading “You Can Build A Little Car That Goes Farther Than You Push It”

Mirror, Mirror, Electron Mirror…

If you look into an electron mirror, you don’t expect to see your reflection. As [Anthony Francis-Jones] points out, what you do see is hard to explain. The key to an electron mirror is that the electric and magnetic fields are 90 degrees apart, and the electrons are 90 degrees from both.

You need a few strange items to make it all work, including an electron gun with a scintillating screen in a low-pressure tube. Once he sets an electric field going, the blue line representing the electrons goes from straight to curved.

Continue reading “Mirror, Mirror, Electron Mirror…”

Metal Crystal Stops Electrons

Researchers at Rice University have found an alloy of copper, vanadium, and sulfur that forms crystals that, due to quantum effects, can trap electrons. This can produce flat bands, which have been observed in 2D crystals previously. The team’s results are the first case of a 3D crystal with that property.

The flat band term refers to the electron energy bands. Normally, the electrons change energy levels based on momentum. But in a flat band, this doesn’t occur. This implies that the electrons are nearly stationary, which leads to unique optical, electronic, and magnetic properties. In addition, flat-band materials often exhibit unusual behavior, such as exotic quantum states, ferromagnetism, or even superconductivity.

Continue reading “Metal Crystal Stops Electrons”

Detecting Neutrinos, The Slippery Ghost Particles That Don’t Want To Interact

Neutrinos are some of the most elusive particles that are well-known to science. These tiny subatomic particles have no electric charge and an extremely small mass, making them incredibly difficult to detect. They are produced in abundance by the sun, as well as by nuclear reactions on Earth and in supernovae. Despite their elusive nature, scientists are keen to detect neutrinos as they can provide valuable information about the processes that produce them.

Neutrinos interact with matter so rarely that it takes a very special kind of detector to catch them in the act. These detectors come in a few different flavors, each employing its unique method to spot these elusive particles. In this article, we’ll take a closer look at how these detectors work and some of the most notable examples of neutrino detectors in the world today.

Continue reading “Detecting Neutrinos, The Slippery Ghost Particles That Don’t Want To Interact”

Bending Light To Fit Technology

Solar power is an excellent way of generating electricity, whether that’s for an off-grid home or for the power grid. With no moving parts maintenance is relatively low, and the downsides of burning fuel are eliminated as well. But as much as it’s revolutionized power generation over the last few decades, there’s still some performance gains to be made when it comes to the solar cells themselves. A team at Stanford recently made strides in improving cell efficiency by bending the properties of sunlight itself.

In order to generate electricity directly from sunlight, a photon with a specific amount of energy needs to strike the semiconductor material. Any photons with higher energy will waste some of that energy as heat, and any with lower energy won’t generate electricity. Previous methods to solve this problem involve using something similar to a prism to separate the light out into colors (or energies) that correlate to specific types of cells calibrated specifically for those colors. This method does the opposite: it changes the light itself to an color that fits the semiconductor material. In short, a specialized material converts the energy from two lower-energy photons into a single higher-energy photon, which then strikes the solar panel to create energy.

By adding these color-changing materials as a layer to a photovoltaic solar panel, the panel can generate more energy with a given amount of light than a traditional panel. The major hurdle, as with any research, is whether or not this will be viable when produced at scale, and this shows promise in that regard as well. There are other applications for these materials beyond photovoltaics as well, and the researchers provide an excellent demonstration in 3D printing. By adding these color-change materials to resin, red lasers can be used instead of blue or ultraviolet lasers to cure resin in extremely specific locations, leading to stronger and more accurate prints.

Simulating A Real Perpetual Motion Device

Perpetual motion and notions of ‘free energy’ devices are some of those pseudo-science topics that seem to perpetually hang around, no matter how many times it is explained how this would literally violate the very fabric of the Universe. Even so, the very notion of a device which repeats the same action over and over with no obvious loss of energy is tempting enough that the laws of physics are employed to effect the impossible in a handy desktop format. This includes the intriguing model demonstrated by [Steve Mould] in a recent video, including a transparent version that reveals the secret.

This particular perpetual motion simulator is made by [William Le] and takes the form of metal balls that barrel down a set of metal rails which turn upward so that each metal ball will land back where it started in the top bowl. To the casual informed observer the basic principle ought to be obvious, with magnetism being a prime candidate to add some extra velocity to said metal ball. What’s less obvious is the whole mechanism that makes the system work, including the detection circuit and the tuning of the parameters that tell the device when its electromagnet should be on or off.

When [Steve] figured that he could just make a transparent version using the guts from the one he purchased, he quickly found out that even with [William]’s help, this wasn’t so easy. Ultimately [William] hand-crafted a transparent version that shows the whole system in its entire glory, even if this is somewhat like demonstrating a magic trick in an easy to follow manner.

Continue reading “Simulating A Real Perpetual Motion Device”