Turns Out Humans Are Terrible At Intuiting Knot Strength

We are deeply intuitively familiar with our everyday physical world, so it was perhaps a bit of a surprise when researchers discovered a blind spot in our intuitive physical reasoning: it seems humans are oddly terrible at judging knot strength.

One example is the reef knot (top) vs. the grief knot (bottom). One is considerably stronger than the other.

What does this mean, exactly? According to researchers, people were consistently unable to tell when presented with different knots in simple applications and asked which knot was stronger or weaker. This failure isn’t because people couldn’t see the knots clearly, either. Each knot’s structure and topology was made abundantly clear (participants were able to match knots to their schematics accurately) so it’s not a failure to grasp the knot’s structure, it’s just judging a knot’s relative strength that seems to float around in some kind of blind spot.

Continue reading “Turns Out Humans Are Terrible At Intuiting Knot Strength”

Pulling Backward To Go Forward: The Brennan Torpedo Explained

The Brennan torpedo, invented in 1877 by Louis Brennan, was one of the first (if not the first) guided torpedoes of a practical design. Amazingly, it had no internal power source but it did have a very clever and counter-intuitive mode of operation: a cable was pulled backward to propel the torpedo forward.

If the idea of sending something forward by pulling a cable backward seems unusual, you’re not alone. How can something go forward faster than it’s being pulled backward? That’s what led [Steve Mould] to examine the whole concept in more detail in a video in a collaboration with [Derek Muller] of Veritasium, who highlights some ways in which the physics can be non-intuitive, just as with a craft that successfully sails downwind faster than the wind.

The short answer is gearing, producing more force on the propeller by pulling out lots of rope.

Continue reading “Pulling Backward To Go Forward: The Brennan Torpedo Explained”

The Stern-Gerlach Experiment Misunderstood

Two guys — Stern and Gerlach — did an experiment in 1922. They wanted to measure magnetism caused by electron orbits. At the time, they didn’t know about particles having angular momentum due to spin. So — as explained by [The Science Asylum] in the video below — they clearly showed quantum spin, they just didn’t know it and Physics didn’t catch on for many years.

The experiment was fairly simple. They heated a piece of silver foil to cause atoms to stream out through a tiny pinhole. The choice of silver was because it was a simple material that had a single electron in its outer shell. An external magnet then pulls silver atoms into a different position before it hits some film and that position depends on its magnetic field.

Continue reading “The Stern-Gerlach Experiment Misunderstood”

Intuition About Maxwell’s Equations

You don’t have to know how a car engine works to drive a car — but you can bet all the drivers in the Indy 500 have a better than average understanding of what’s going on under the hood. All of our understanding of electronics hinges on Maxwell’s equations, but not many people know them. Even fewer have an intuitive feel for the equations, and [Ali] wants to help you with that. Of course, Maxwell’s gets into some hairy math, but [Ali] covers each law in a very pragmatic way, as you can see in the video below.

While the video explains the math simply, you’ll get more out of it if you understand vectors and derivatives. But even if you don’t, the explanations provide a lot of practical understanding

Understanding the divergence and curl operators is one key to Maxwell’s equations. While this video does give a quick explanation, [3Blue1Brown] has a very detailed video on just that topic. It also touches on Maxwell’s equations if you want some reinforcement and pretty graphics.

Maxwell’s equations can be very artistic. This is one of those topics where math, science, art, and history all blend together.

Continue reading “Intuition About Maxwell’s Equations”

Measuring Temperature Without A Thermometer

If you need to measure the temperature of something, chances are good that you could think up half a dozen ways to do it, pretty much all of which would involve some kind of thermometer, thermistor, thermocouple, or other thermo-adjacent device. But what if you need to measure something really hot, hot enough to destroy your instrument? How would you get the job done then?

Should you find yourself in this improbable situation, relax — [Anthony Francis-Jones] has you covered with this calorimetric method for measuring high temperatures. The principle is simple; rather than directly measuring the temperature of the flame, use it to heat up something of known mass and composition and then dunk that object in some water. If you know the amount of water and its temperature before and after, you can figure out how much energy was in the object. From that, you can work backward and calculate the temperature the object must have been at to have that amount of energy.

For the demonstration in the video below, [F-J] dangled a steel ball from a chain into a Bunsen burner flame and dunked it into 150 ml of room-temperature water. After a nice long toasting, the ball went into the drink, raising the temperature by 27 degrees. Knowing the specific heat capacity of water and steel and the mass of each, he worked the numbers and came up with an estimate of about 600°C for the flame. That’s off by a wide margin; typical estimates for a natural gas-powered burner are in the 1,500°C range.

We suspect the main source of error here is not letting the ball and flame come into equilibrium, but no matter — this is mainly intended as a demonstration of calorimetry. It might remind you of bomb calorimetry experiments in high school physics lab, which can also be used to explore human digestive efficiency, if you’re into that sort of thing.

Continue reading “Measuring Temperature Without A Thermometer”

Remembering John Wheeler: You’ve Definitely Heard Of His Work

Physicist John Archibald Wheeler made groundbreaking contributions to physics, and [Amanda Gefter] has a fantastic writeup about the man. He was undeniably brilliant, and if you haven’t heard of him, you have certainly heard of some of his students, not to mention his work.

Ever heard of wormholes? Black holes? How about the phrase “It from Bit”? Then you’ve heard of his work. All of those terms were coined by Wheeler; a knack for naming things being one of his talents. His students included Richard Feynman and Kip Thorne (if you enjoyed The Martian, you at least indirectly know of Kip Thorne) and more. He never won a Nobel prize, but his contributions were lifelong and varied.

Continue reading “Remembering John Wheeler: You’ve Definitely Heard Of His Work”

A finger points at a diagram of a battery with two green bars. Above it is another battery with four smaller green bars with a similar area to the first battery's two. The bottom batter is next to a blue box with a blue wave emanating from it and the top battery has a red box with a red wave emanating from it. Below the red wave is written "2x wavelength" and below the top battery is "1/2 energy in a photon."

What Are Photons, Anyway?

Photons are particles of light, or waves, or something like that, right? [Mithuna Yoganathan] explains this conundrum in more detail than you probably got in your high school physics class.

While quantum physics has been around for over a century, it can still be a bit tricky to wrap one’s head around since some of the behaviors of energy and matter at such a small scale aren’t what we’d expect based on our day-to-day experiences. In classical optics, for instance, a brighter light has more energy, and a greater amplitude of its electromagnetic wave. But, when it comes to ejecting an electron from a material via the photoelectric effect, if your wavelength of light is above a certain threshold (bigger wavelengths are less energetic), then nothing happens no matter how bright the light is.

Scientists pondered this for some time until the early 20th Century when Max Planck and Albert Einstein theorized that electromagnetic waves could only release energy in packets of energy, or photons. These quanta can be approximated as particles, but as [Yoganathan] explains, that’s not exactly what’s happening. Despite taking a few classes in quantum mechanics, I still learned something from this video myself. I definitely appreciate her including a failed experiment as anyone who has worked in a lab knows happens all the time. Science is never as tidy as it’s portrayed on TV.

If you want to do some quantum mechanics experiments at home (hopefully with more luck than [Yoganathan]), then how about trying to measure Planck’s Constant with a multimeter or LEGO? If you’re wondering how you might better explain electromagnetism to others, maybe this museum exhibit will be inspiring.

Continue reading “What Are Photons, Anyway?”