Token Authentication For Gmail Using A EZ430 Chronos Watch

Two-factor authentication allows you to use your chosen password, as well as a one-time password to help keep your services secure. The one-time passwords traditionally come from a dedicated piece of hardware, but there are also solutions for smart phones. [Patrick Schaumont] shows how a TI eZ430 Chronos Watch can be used to generate authentication tokens. After walking through the process he uses it to beef up his gmail login.

This method of token authentication is often called Time-based One Time Passwords (TOTP). It’s part of the Open Authentication (OATH) initiative, which seeks to sort out the password-hell that is modern computing. A portable device generates a password by applying an algorithm and a private encryption key to an accuarte time-stamp. On the server side of things a public key is used to verify the one-time password entered based on the server’s own time-stamp. In this case the portable device is the Chronos watch and the server is Google’s own TOTP service.

You can do this with other simple microcontrollers, we’ve even seen an Arduino implementation. But the wrist-watch form factor seen here is by far the most convenient — as long as you always remember to wear the watch.

[Thanks Oxide]

Time-based One-Time Passwords With An Arduino

Get your feet wet with Time-based One-Time Password (TOTP) security by building your own Arduino OATH system. OATH is an open standard authentication system that provides a platform to generate tokens, making your login more secure than a password alone would.

The TOTP approach is what is used with many companies that issue hardware-based dongles for logging in remotely. This security may have been compromised but it’s still better than passwords alone. Plus, if you’re building it around an Arduino we’d bet you’re just trying to learn and not actually responsible for protecting industrial or state secrets.

The hardware setup requires nothing more than the Arduino board with one button and a screen as a user interface. Since the board has a crystal oscillator it keeps fairly accurate time (as long as it remains powered). It will push out a new token every thirty seconds. The video after the break shows that the Arduino-calculated value does indeed match what the test box is displaying.

Continue reading “Time-based One-Time Passwords With An Arduino”