Detecting Helium Leaks With Sound In A Physics-Based Sensor

Helium is inert, which makes it useful in a lot of different industries. But helium’s colorless and odorless non-reactivity also means traditional gas sensing methods don’t work. Specialized detectors exist, but are expensive and fussy. Thankfully, researcher [Li Fan] and colleagues found a physics-based method of detecting helium that seems as elegant as it is simple.

The new sensor relies on a topological kagome structure, and doesn’t depend on any chemical reaction or process whatsoever. The cylinders in the structure are interconnected; air can flow in and speakers at the three corners inject sound.

Sound waves propagate through the air within the structure at a fixed rate, and as helium enters the sensor it changes how fast the sound waves travel. This measurable shift in vibration frequency indicates the concentration of helium. It’s stable, calibration-free, doesn’t care much about temperature, and resets quickly. Even better, the three corners act as separate sensors, making it directional. It’s even quite rugged. Just as a basket weaved in a kagome pattern is stable and resistant to damage or imperfections in the individual strips that make up the pattern, so too is this sensor only marginally affected by physical defects.

The sensor design has been tested and shown to work with helium, but could possibly be applied to other gases. More detail is available at ResearchGate, with some information about the math behind it all in a supplemental paper.

Metamaterial Enables Topological Pumping Of Elastic Surface Waves

Although it is generally assumed that surface elastic waves (vibrations) — such as those of earthquakes — will travel mostly unimpeded until their energy dissipates, there are ways to ‘steer’ this energy using metamaterials.

Time response of the topological surface wave transport.(A to C). The magnitude of total displacement field at 0.5 ms, 2.5 ms, and 4 ms, respectively. A 50-cycle tone burst signal centered at 41.88 kHz is simulated on the bottom supercell. (Wang et al., 2023)
Time response of the topological surface wave transport.
(A to C). The magnitude of total displacement field at 0.5 ms, 2.5 ms, and 4 ms, respectively. A 50-cycle tone burst signal centered at 41.88 kHz is simulated on the bottom supercell. (Wang et al., 2023)

A recent study by [Shaoyun Wang] and colleagues in Science Advances details how a carefully modelled grouping of columns creates what is termed a synthetic dimension. In their experimental setup, it is demonstrated how an applied wave is guided across the metamaterial, rather than spreading out the way which we would expect to see in conventional materials.

Interestingly, in the paper it is also demonstrated how the same technique can be used to create a wave-splitter that diverts the wave energy in two distinct directions. Due to the innate resistance of this type of structure to defects, manufacturing it is not too complicated.

In this experiment the metamaterials were milled out of a block of aluminium on a CNC mill, which makes it seem eminently realistic that it could be scaled up and translated to other applications. Conceivably annoyances like vibrations from road traffic and heavy machinery, all the way up to the destructive energies of earthquakes could one day be reduced, redirected or even extinguished using structures as demonstrated here.

Acoustic Switching Transistors: A New Kind Of Electronics?

Have you ever heard of topological insulators? These are exotic materials where electricity flows only on the surface with very little loss. Now, according to IEEE Spectrum, scientists at Harvard have used the same concept to create a transistor for sound waves and it may be a new branch of electronics. The actual paper is available if you want some light reading.

Apparently, topological insulators protect electrons moving along their surfaces and edges, something that won the 2016 Nobel Prize in Physics. Photons can also be protected topologically so they move with very little loss across the materials. Making electrons flow in this manner is an attractive proposition, but there are challenges, especially when creating a device that can switch the flow of electrons on and off as you might with a transistor in and out of saturation. Sound waves, however, are much easier to work with.

Continue reading “Acoustic Switching Transistors: A New Kind Of Electronics?”