Using Photogrammetry To Design 3D Printed Parts

[Stefan] is building a fixed wing drone, and with that comes the need for special mounts and adapters for a GoPro. The usual way of creating an adapter is pulling out a ruler, caliper, measuring everything, making a 3D model, and sending it off to a 3D printer. Instead of doing things the usual way, [Stefan] is using photogrammetric 3D reconstruction to build a camera adapter that fits perfectly in his plane and holds a camera securely.

ScanPhotogrammetry requires taking a few dozen pictures with a camera, using software to turn these 2D images into a 3D model, and building the new part from that model. The software [Stefan] is using is Pix4D, a piece of software that is coincidentally used to create large-scale 3D models from drone footage.

With the 2D images turned into a 3D model, [Stefan] imported the .obj file into MeshLab where the model could be cropped, smoothed, and the file size reduced. From there, creating the adapter was as simple as a little bit of OpenSCAD and sending the adapter model off to a 3D printer.

Just last week we saw photogrammetry used in another 3D object scanner. The results from both of these projects show real promise for modeling, especially with objects that are difficult to measure by hand.

Simple Headphone Bracket Shows Off Carbon Fiber Basics

The carbon fiber look is a pretty hot design element for things these days. Even things that have no need for the strength and flexibility of carbon fiber, from phone cases to motorcycle fenders, are sporting that beautiful glossy black texture. Some of it only looks like the real stuff, though, so it’s refreshing to see actual carbon fiber used in a project, like this custom headphone rack.

True, this is one of those uses of carbon fiber that doesn’t really need it – it just looks cool. But more importantly, [quada03]’s build log takes us through the whole process, from design to mold construction to laying up the fiber mats and finishing, and shows us how¬†specialized equipment is not needed to achieve a great result. A homemade CNC router carves the two-piece mold out of Styrofoam, which is then glued up and smoothed over with automotive body filler. The epoxy-soaked carbon fiber mats are layered into the mold with careful attention paid to the orientation of the fibers, and the mold goes into one of those clothes-packing vacuum bags for 24 hours of curing. A little trimming and sanding later and the finished bracket looks pretty snazzy.

We’ve discussed the basics of carbon fiber fabrication before, but what we like about [quada03]’s build is that it shows how approachable carbon fiber builds can be. Once you hone your skills, maybe you’ll be ready to tackle a carbon fiber violin.

[via r/DIY]