This Week In Security: Default Passwords, Lock Slapping, And Mastodown

The UK has the answer to all our IoT problems: banning bad default passwords. Additionally, the new UK law requires device makers to provide contact info for vulnerability disclosures, as well as a requirement to advertise vulnerability fix schedules. Is this going to help the security of routers, cameras, and other devices? Maybe a bit.

I would argue that default passwords are in themselves the problem, and complexity requirements only nominally help security. Why? Because a good default password becomes worthless once the password, or algorithm leaks. Let’s lay out some scenarios here. First is the static default password. Manufacturer X makes device Y, and sets the devices to username/password admin/new_Complex_P@ssword1!. Those credentials make it onto a default password list, and any extra security is lost.

What about those devices that have a different, random-looking password for each device? Those use an algorithm to derive that password from the MAC address and/or serial number. That may help the situation, but the algorithm can be retrieved from the firmware, and most serial numbers are predictable in one way or another. This approach is better, but not a silver bullet.

So what would a real solution to the password problem look like? How about no default password at all, but no device functionality until the new password passes a cracklib complexity and uniqueness check. I have seen a few devices that do exactly this. The requirement for a disclosure address is a great idea, which we’ve talked about before regarding the similar EU legislation.

Continue reading “This Week In Security: Default Passwords, Lock Slapping, And Mastodown”

FLOSS Weekly Episode 781: Resistant To The Wrath Of God

This week Jonathan Bennett and Doc Searls sit down with Mathias Buus Madsen and Paolo Ardoino of Holepunch, to talk about the Pear Runtime and the Keet serverless peer-to-peer platform. What happens when you take the technology built for BitTorrent, and apply it to a messaging app? What else does that allow you to do? And what’s the secret to keeping the service running even after the servers go down?

Continue reading “FLOSS Weekly Episode 781: Resistant To The Wrath Of God”

This Week In Security: Cisco, Mitel, And AI False Flags

There’s a trend recently, of big-name security appliances getting used in state-sponsored attacks. It looks like Cisco is the latest victim, based on a report by their own Talos Intelligence.

This particular attack has a couple of components, and abuses a couple of vulnerabilities, though the odd thing about this one is that the initial access is still unknown. The first part of the infection is Line Dancer, a memory-only element that disables the system log, leaks the system config, captures packets and more. A couple of the more devious steps are taken, like replacing the crash dump process with a reboot, to keep the in-memory malware secret. And finally, the resident installs a backdoor in the VPN service.

There is a second element, Line Runner, that uses a vulnerability to arbitrary code from disk on startup, and then installs itself onto the device. That one is a long term command and control element, and seems to only get installed on targeted devices. The Talos blog makes a rather vague mention of a 32-byte token that gets pattern-matched, to determine an extra infection step. It may be that Line Runner only gets permanently installed on certain units, or some other particularly fun action is taken.

Fixes for the vulnerabilities that allowed for persistence are available, but again, the initial vector is still unknown. There’s a vulnerability that just got fixed, that could have been such a vulnerability. CVE-2024-20295 allows an authenticated user with read-only privileges perform a command injection as root. Proof of Concept code is out in the wild for this one, but so far there’s no evidence it was used in any attacks, including the one above. Continue reading “This Week In Security: Cisco, Mitel, And AI False Flags”

FLOSS Weekly Episode 780: Zoneminder — Better Call Randal

This week Jonathan Bennett and Aaron Newcomb chat with Isaac Connor about Zoneminder! That’s the project that’s working to store and deliver all the bits from security cameras — but the CCTV world has changed a lot since Zoneminder first started, over 20 years ago. The project is working hard to keep up, with machine learning object detection, WebRTC, and more. Isaac talks a bit about developer burnout, and a case or two over the years where an aggressive contributor seems suspicious in retrospect. And when is the next stable version of Zoneminder coming out, anyway?

Continue reading “FLOSS Weekly Episode 780: Zoneminder — Better Call Randal”

This Week In Security: Putty Keys, Libarchive, And Palo Alto

It may be time to rotate some keys. The venerable PuTTY was updated to 0.81 this week, and the major fix was a change to how ecdsa-sha2-nistp521 signatures are generated. The problem was reported on the oss-security mailing list, and it’s quite serious, though thankfully with a somewhat narrow coverage.

The PuTTY page on the vulnerability has the full details. To understand what’s going on, we need to briefly cover ECDSA, nonces, and elliptic curve crypto. All cryptography depends on one-way functions. In the case of RSA, it’s multiplying large primes together. The multiplication is easy, but given just the final result, it’s extremely difficult to find the two factors. DSA uses a similar problem, the discrete logarithm problem: raising a number to a given exponent, then doing modulo division.

Yet another cryptography primitive is the elliptic curve, which uses point multiplication as the one-way function. I’ve described it as a mathematical pinball, bouncing around inside the curve. It’s reasonably easy to compute the final point, but essentially impossible to trace the path back to the origin. Formally this is the Elliptic Curve Discrete Logarithm Problem, and it’s not considered to be quantum-resistant, either.

One of the complete schemes is ECDSA, which combines the DSA scheme with Elliptic Curves. Part of this calculation uses a nonce, denoted “k”, a number that is only used once. In ECDSA, k must be kept secret, and any repetition of different messages with the same nonce can lead to rapid exposure of the secret key.

And now we get to PuTTY, which was written for Windows back before that OS had any good cryptographic randomness routines. As we’ve already mentioned, re-use of k, the nonce, is disastrous for DSA. So, PuTTY did something clever, and took the private key and the contents of the message to be signed, hashed those values together using SHA-512, then used modulo division to reduce the bit-length to what was needed for the given k value. The problem is the 521-bit ECDSA, which takes a 521-bit k. That’s even shorter than the output of a SHA-512, so the resulting k value always started with nine 0 bits. Continue reading “This Week In Security: Putty Keys, Libarchive, And Palo Alto”

FLOSS Weekly Episode 779: Errata Prevention Specialist

This week Jonathan Bennett and Dan Lynch sit down with Andy Stewart to talk about Andy’s Ham Radio Linux (AHRL)! It’s the Linux distro designed to give hams the tools they need to work with their radios. What’s it like to run a niche Linux distro? How has Andy managed to keep up with this for over a decade? And what’s the big announcement about the project breaking today?

Continue reading “FLOSS Weekly Episode 779: Errata Prevention Specialist”

This Week In Security: BatBadBut, DLink, And Your TV Too

So first up, we have BatBadBut, a pun based on the vulnerability being “about batch files and bad, but not the worst.” It’s a weird interaction between how Windows uses cmd.exe to execute batch files and how argument splitting and character escaping normally works. And what is apparently a documentation flaw in the Windows API.

When starting a process, even on Windows, the new executable is handed a set of arguments to parse. In Linux and friends, that is a pre-split list of arguments, the argv array. On Windows, it’s a single string, left up to the program to handle. The convention is to follow the same behavior as Linux, but the cmd.exe binary is a bit different. It uses the carrot ^ symbol instead of the backslash \ to escape special symbols, among other differences. The Rust devs took a look and decided that there are some cases where a given string just can’t be made safe for cmd.exe, and opted to just throw an error when a string met this criteria.

And that brings us to the big questions. Who’s fault is it, and how bad is it? I think there’s some shared blame here. The Microsoft documentation on CreateProcess() strongly suggests that it won’t execute a batch file without cmd.exe being explicitly called. On the other hand, This is established behavior, and scripting languages on Windows have to play the game by Microsoft’s rules. And the possible problem space is fairly narrow: Calling a batch file with untrusted arguments.

Almost all of the languages with this quirk have either released patches or documentation updates about the issue. There is a notable outlier, as the Java language will not receive a fix, not deeming it a vulnerability. It’s rather ironic, given that Java is probably the most likely language to actually find this problem in the wild. Continue reading “This Week In Security: BatBadBut, DLink, And Your TV Too”