Inside A Cordless Soldering Station

There was a time when soldering stations were unusual in hobby labs. These days, inexpensive stations are everywhere. [Kerry Wong] looks at the TS1C station, which is tiny and cordless. As he points out, cordless irons are not new, but modern battery technology has made them much more practical. However, this iron doesn’t actually have a battery.

The iron has a large 750 Farad supercapacitor. This has advantages and disadvantages. On the plus side, a supercapacitor charges quickly and doesn’t get weaker with each charging cycle like a conventional battery. On the minus side, the large capacitor makes the unit bulky compared to normal irons. [Kerry] notes that it is ergonomic, though, and he felt comfortable holding it. Also, the supercapacitor limits the amount of charge available while soldering.

It is somewhat of a balance, though. If you want to take the iron and climb a tower, you might be very interested in a longer running time. But if you return the unit to the base every few minutes, the fast charging of the cap will compensate for the lower capacity, and you’ll probably never notice it go flat.

The iron itself doesn’t display any data. The display is on the base, meaning the devices must be paired via Bluetooth. It also requires a PD-enabled USB-C connection, so you can’t just wire it to a battery. You can plug a power supply right into the iron if you prefer, but you still can’t use a simple power connection.

Of course, you assume it does an adequate job of soldering. We wanted to see inside! And [Kerry] didn’t disappoint. If you want to see soldering, skip to about the 10-minute marker. The teardown starts at around 16 minutes.

Honestly, for the bench, we’d probably stick with a wired iron. You don’t always want a base and a PD power supply for a portable iron. But if you absolutely hate cords, this could be a reasonable answer. We’ve seen another review of this iron that didn’t like the plastic casings. Maybe it is like Jedi and lightsabers: you should just build your own.

Continue reading “Inside A Cordless Soldering Station”

The Egyptian Coin Box ‘Trick’

[James Stanley] likes to spend time making puzzles and gadgets for escape rooms, and decided for a change to try their hand at a bit of magic. The idea was to construct a ‘magic box’, in which a coin can be placed in one of a number of slots, and then be able to remotely be able to determine the slot by means unseen. Obviously, this is an electronics hack, with a neat package of sensor and radio comms hidden inside a stack of CNC-milled wood. Coin locations are transmitted via Bluetooth to a Bangle.js smartwatch, which vibrates according to the slot occupied, allowing [James] to predict where the coin was placed. Continue reading “The Egyptian Coin Box ‘Trick’”

An exploded view of an AirPods Pro case. The outer case consists of two long, capsule-shaped sections that enclose several smaller parts including the wireless charging cable, contacts for charging the AirPods themselves, and the top rounded protective piece for the buds that nestles into the top capsule. This version includes screws to fasten everything together instead of adhesives.

Fixing Some More Of Apple’s Design Mistakes

Love them or hate them, there’s no denying that Apple has strayed from the Woz’s original open platform ideal for the Apple II. [Ken Pillonel] is back for another round of fixing Apple’s repairability mistakes with a full complement of 3D printable replacement parts for the AirPods Pro case.

While modeling all of the parts would be handy enough for repairing a device with a 0/10 iFixit score, [Pillonel] modified the parts to go together with screws instead of adhesive so any future repairs don’t require cracking the plastic egg. He says, “By showcasing the potential for repairability, I hope to inspire both consumers and multi-billion dollar companies, like Apple, to embrace sustainable practices in their products.”

[Pillonel]’s repairability exploits may seem familiar to readers from his previous work on adding USB-C to the iPhone and the AirPods Pro case. If you just need to retrieve a lost AirPod, you might try an electromagnet, or you can make a Bluetooth receiver from a pair of knock-off buds.

Continue reading “Fixing Some More Of Apple’s Design Mistakes”

How Does Your McDonald’s Burger Get To You?

Table service and McDonalds sound as though they should be mutually exclusive as a fundamental of the giant chain’s fast food business model, but in many restaurants there’s the option of keying in the number from a plastic beacon when you order, placing the beacon on the table, and waiting for a staff member to bring your food. How does the system work? [Whiterose Infosec] scored one of the beacons, and subjected it to a teardown and some probing.

The beacon in question has the look of being an older model judging by the 2009 date codes on its radio module and the evident corrosion on its battery terminals. Its Bluetooth 4 SoC is end-of-life, so it’s possible that this represents a previous version of the system. It has a few other hardware features, including a magnet and a sensor designed to power the board down when it is stacked upon another beacon.

Probing its various interfaces revealed nothing, as did connecting to the device via Bluetooth. However some further research as well as asking some McD’s employees revealed some of its secret. It does little more than advertise its MAC address, and an array of Bluetooth base stations in the restaurant use that to triangulate its approximate position.

If you’ve ever pondered how these beacons work while munching on your McFood, you might also like to read about McVulnerabilities elsewhere in the system.

A loudspeaker with a supercapacitor PCB next to it

Hackaday Prize 2023: Supercapacitors Let Solar Speaker Work In Darkness

Solar panels are a great way to generate clean electricity, but require some energy storage mechanism if you also want to use their power at night. This can be a bit tricky for large solar farms that feed into the grid, which require enormous battery banks or pumped storage systems to capture a reasonable amount of energy. It’s much easier for small, handheld solar gadgets, which work just fine with a small rechargeable battery or even a big capacitor. [Jamie Matthews], for instance, built a loudspeaker that runs on solar power but can also work in the dark thanks to two supercapacitors.

The speaker’s 3D-printed case has a 60 x 90 mm2 solar panel mounted at the front, which charges a pair of 400 Farad supercaps. Audio input is either through a classic 3.5 mm socket or through the analog audio feature of a USB-C socket. That same USB port can also be used to directly charge the supercaps when no sunlight is available, or to attach a Bluetooth audio receiver, which in that case will be powered by the speaker.

A speaker's passive radiator next to a solar panel
The solar panel sits right next to the passive radiator before both are covered with speaker fabric.

The speaker’s outer shell, the front bezel, and even the passive radiator are 3D-printed and spray-painted. The radiator is made of a center cap that is weighed down by a couple of M4 screws and suspended in a flexible membrane. [Jamie] used glue on all openings to ensure the box remains nearly airtight, which is required for the passive radiator to work properly. Speaker fabric is used to cover the front, including the solar panel – it’s apparently transparent enough to let a few watts of solar power through.

A salvaged three-inch Bose driver is the actual audio source. It’s driven by a TI TPA2013D1 chip, which is a 2.7 W class-D amplifier with an integrated boost converter. This enables the chip to keep a constant output power level across a wide supply voltage range – ideal for supercapacitor operation since supercaps don’t keep a constant voltage like lithium batteries do.

[Jamie] has used the speaker for more than nine months so far and has only had to charge it twice manually. It probably helps that he lives in sunny South Africa, but we’ve seen similar solar audio projects work just fine in places like Denmark. If you’re taking your boombox to the beach, a sunscreen reminder feature might also come in handy.

Raspberry Pi Pico W Now Supports Bluetooth

What’s the best kind of upgrade a piece of consumer technology can get? A free one that doesn’t require you to do anything other than accept a new version of the software it’s running.

That’s precisely what every current (and future) owner of the Raspberry Pi Pico W just got with the addition of Bluetooth support to SDK 1.5.1. This is possible because the CYW43439 radio chipset used on the wireless version of the Pi Pico has always had Bluetooth capabilities, they just weren’t officially accessible from the C or MicroPython environments until now. In a corresponding blog post, [Eben Upton] explains that part of the delay was due to difficulties in getting both WiFi and Bluetooth connections to work simultaneously over the three-pin SPI bus that links the two chips on the board.

One thing that struck us as particularly interesting here is the use of BlueKitchen’s BTStack to provide support for both Bluetooth Classic and Low Energy profiles. This library is released under a modified version of the BSD 3-Clause license that otherwise specifically forbids commercial usage. That would be a problem for anyone who wanted to sell a gadget built around the Pico W, so Raspberry Pi Ltd negotiated — and presumably paid for — a special dispensation so commercial use is in the clear.

We should note that technically Bluetooth support was available in a beta state previously, albeit without this new license agreement made with BlueKitchen. Though anyone with a keen eye knew Bluetooth support was coming well before that, our own [Elliot Williams] called it when he first set eyes on the Pi Pico W back in 2022.

Nokia N-Gage QD Becomes Universal Bluetooth Gamepad

The Nokia N-Gage might not have put up much of a fight against Nintendo’s handheld dynasty, but you can’t say it didn’t have some pretty impressive technology for the time. [BeardoGuy] happens to have a perfectly functional N-Gage QD, which he turned into a universal Bluetooth gamepad.

The handheld runs a program that makes it act as a gamepad, and a DIY Bluetooth dongle is required on the client side. The dongle consists of an ATtiny85-based development board and HC-06 Bluetooth module, and will be recognized as a USB gamepad by just about anything it plugs in to.

[BeardoGuy]’s custom GamepadBT program sends button events via Bluetooth to the dongle, and those events are then sent via USB and look just like those from any standard gamepad.

This project can be used as a resource for how to implement a USB gamepad, whether on a Nokia N-Gage or not. You can see all the details at the project’s GitHub repository, and watch it in action in the video embedded below.

As for the Nokia N-Gage itself, one might be interested to know there’s an up-to-date development environment and even Wordle has been ported to the N-Gage. It may look like a relic of the past, but it is far from being forgotten.

Continue reading “Nokia N-Gage QD Becomes Universal Bluetooth Gamepad”