Moonbounce Music

There’s something inspiring about echos. Who among us hasn’t called out or clapped hands in a large space just to hear the sound reflected back? Radio takes this to a whole new level. You can bounce signals from buildings, aircraft, the ionisphere, or even the Moon itself. Humans have been bouncing radio waves from the moon for decades. It’s been used at war, and in peacetime. But [Hainbach] might be the first to use it for music.

Earth Moon Earth or EME communication is quite popular with amateur radio operators. With the right equipment, you can bounce a signal off the moon and hear the echo around 2.5 seconds later. The echo isn’t quite normal though. The moon and the earth are both rotating and moving in relation to each other. This causes Doppler shifts. At higher frequencies, even the craters and surface features of the moon can be heard in the echo.

[Hainbach] spent some time learning about moonbounce at a large radio telescope, and wanted to share this strange audio effect with the world. Unfortunately, most of us don’t have the large microwave dish required for this. The next best thing was to create an application which emulates the sound of a moon bounce. To this end, [Hainbach] created a Moon Echo, an audio plugin that emulates a moonbounce.

Moon Echo was created using sounds from a soprano signer and a double bass. [Hainbach] had to be careful not to be too musical, as ham operators are not allowed to broadcast music. This meant all the tests had to be broken into short non-musical clips. Rolling all this empirical data into a model took quite a bit of work, but the end result is worth it.

If you’d like to learn how to moonbounce yourself, check this article out.
Continue reading “Moonbounce Music”

How To Receive Pictures From Spaaace!

The International Space Station, or ISS, has been in orbit in its various forms now for almost twenty years. During that time many of us will have stood outside on a clear night and seen it pass overhead, as the largest man-made object in space it is clearly visible without a telescope.

Most ISS-watchers will know that the station carries a number of amateur radio payloads. There are voice contacts when for example astronauts talk to schools, there are digital modes, and sometimes as is happening at the moment for passes within range of Moscow (on Feb. 14, 11:25-16:30 UTC) the station transmits slow scan television, or SSTV.

You might think that receiving SSTV would be hard work and require expensive equipment, but given the advent of ubiquitous mobile and tablet computing alongside dirt-cheap RTL-SDRs it is now surprisingly accessible. An Android phone can run the SDRTouch software defined radio app as well as the Robot36 SSTV decoder, and given a suitable antenna the pictures can be received and decoded relatively easily. The radio must receive 145.8MHz wideband FM and the decoder must be set to the PD120 PD180 mode (Thanks [M5AKA] for the update), and here at least the apps are run on separate Android devices. It is possible to receive the signal using extremely basic antennas, but for best results something with a little gain should be used. The antenna of choice here is a handheld [HB9CV] 2-element beam.

A failed grab from a 2014 transmission, proving that Hackaday scribes don't always get perfect results.
A failed grab from a 2015 transmission, proving that Hackaday scribes don’t always get perfect results.

You can find when the station is due to pass over you from any of a number of ISS tracker sites, and you can keep up to date with ISS SSTV activity on the ARISS news page. Then all you have to do is stand out in the open with your receiver and computing devices running and ready, and point your antenna at the position of the station as it passes over. If you are lucky you’ll hear the tones of the SSTV transmission and a picture will be decoded, if not you may receive a garbled mess. Fortunately grabs of other people’s received pictures are posted online, so you can take a look at what you missed if you don’t quite succeed.

Even if you don’t live within range of a pass, it’s always worth seeing if a Web SDR somewhere is in range. For example this Russian one for the current transmissions.

In that you are using off-the-shelf hardware and software you might complain there is little in the way of an elite hack about pulling in a picture from the ISS. But wait a minute — you just received a picture from an orbiting space station. Do that in front of a kid, and see their interest in technology come alive!