Welding Robot Takes on a Hot, Dirty, Dangerous Job

They used to say that robots would take over the jobs too dirty or dangerous for humans. That is exactly what [Joel Sullivan] had in mind when he created this welding robot. [Joel] designed the robot for the OSB industry. No, that’s not a new operating system, it’s short for Oriented Strand Board. An engineered lumber, OSB is made of strands (or chips) of wood. It’s similar to plywood but doesn’t require large thin sheets of lumber. To make a panel of OSB, a 5-inch thick matt of wood chips is mixed with glue and compressed down to 5/16″ at 7500 PSI and 400° F.

The presses used to make OSB are a massively parallel operation. 20 or more boards can be pressed at once. Thy press is also a prime area for damage. A nut or bolt hidden in the wood will dig into the press, causing a dent which will show up on every sheet which passes through that section. The only way to fix the press is to shut it down, partially dismantle it, and fill the void in with a welder. [Joel’s] robot eliminates most of the downtime by performing the welding on a still hot, still assembled press.

The robot looks like it was inspired by BattleBots, which is fitting as the environment it works in is more like a battleground. It’s a low, wide machine. In the front are two articulated arms, one with a welder, and one with a die grinder. The welder fills any voids in the press platen, and the die grinder grinds the fresh welds flat.  An intel NUC controls things, with plenty of motor drives, power supplies, and relays on board.

[Joel’s] bot is tethered, with umbilicals for argon, electricity and compressed air. Air travels through channels throughout the chassis and keeps the robot cool on the hot press. Everything is designed for high temperatures, even the wheels. [Joel] tried several types of rubber, but eventually settled on solid aluminum wheels. The ‘bot doesn’t move very fast, so there is plenty of traction. Some tiny stepper motors drive the wheels. When it’s time to weld, pneumatic outriggers lock the robot in place inside the narrow press.

Cameras with digital crosshairs allow the operator to control everything through a web interface. Once all the parameters are set up, the operator clicks go and sparks fly as the robot begins welding.

If you’re into seriously strong robots, check out trackbot, or this remote-controlled snow blower!

Continue reading “Welding Robot Takes on a Hot, Dirty, Dangerous Job”

The Modern Analog Soldering Station

There is a certain sense of accomplishment one gets when building their own tools. This is what [Alejandro Velazquez] was going for when he built his own soldering station. Sure you can get a decent station for a pittance on Amazon, or eBay. You can even build your own microprocessor controlled station. [Alejandro] is currently interested in analog electronics, so he went that route to build his own closed-loop station.

The handle is a 50 watt, 24-volt affair with a thermocouple. You can find this handle on many Hakko 907 clone soldering stations, often referred to as the 907A. The station itself is completely analog. A triac switches the current going to the heater. The triac is controlled by a PWM signal. The PWM itself is generated and regulated by an LM324 quad op-amp, which is the heart of the station. The op-amp compares the setpoint with the current temperature read from the soldering handle’s thermocouple, then adjusts the duty cycle of the PWM signal to raise, or lower the temperature.

It’s a classic control system, and the schematic is definitely worth checking out if you want to understand how op-amps can be used to create complex operations.

You can find plenty more information on analog electronics right here on Hackaday — we’ve covered thermocouple amplifiers, as well as instrumentation amps. If you’re more of a digital man, check out this Arduino controlled soldering station!

Life Imitates Art: 3D Printed Banksy Frame “Shreds” Oeuvre, Prints Money

[Dave Buchanan] is giving the world his own take on the now famous shredding Banksy frame. This version has a few extra features though – like reverse shredding and printing money! Like many of us, [David] was impressed with the Banksy art auction shredding last week. We’re still not sure how he pulled it off, and the jury is still out if it was real, or all some sort of stunt involving the auction house.

[David] took his inspiration straight to CAD software, and designed a miniature version of the frame. A quick trip to the 3D printer and he had the actual frame in hand.  He even hand-painted his own copy of Girl with Balloon on canvas. Assembly didn’t quite go as planned, a few parts had to be adjusted — i.e. cut off and hot-glued together. But in the end, the hack worked – the frame would shred and un-shred the painting whenever someone cranked the handle.

If you haven’t guessed yet, [David’s] frame is a version of the classic money printing trick. What looks like two rollers is actually a simple belt drive. The mechanism pulls in one piece of paper while pushing out a hidden piece. It creates the illusion of printing money – or of shredding art. Given Banksy’s sense of humor, we can’t help but wonder if his frame worked the same way.

[David] is working on a re-design of his piece which will be easier to build — so keep an eye on his Reddit thread if you’d like to print your own.

Continue reading “Life Imitates Art: 3D Printed Banksy Frame “Shreds” Oeuvre, Prints Money”

Atlas is Back with Some New Moves

Atlas is back, and this time he’s got some sweet parkour moves to show off. Every few months, Boston Dynamics gives us a tantalizing glimpse into their robotics development labs. They must be doing something right, as these videos never fail both to amaze and scare us. This time Atlas, Boston Dynamics humanoid bipedal robot, is doing a bit of light parkour — jumping over a log and from box to box. The Atlas we’re seeing here is the evolution of the same robot we saw at the DARPA Robotics Challenge back in 2013.

The video caption mentions that Atlas is using machine vision to analyze the position of markers on the obstacles. It can then plot the most efficient path over the obstructions. The onboard control system then takes over and uses Atlas’ limbs and torso for balance and momentum as the robot jumps up and over everything in its path.

It’s interesting to see how smoothly Atlas jumps the offset staircase, leaping left to right from step to step. The jumping is extremely smooth and fluid — it seems almost human.  You can even see Atlas’ let foot just barely clear the box on the second jump. We have to wonder how many times Atlas fell while the software was being perfected.

One thing is for sure, logs and boxes may slow down zombies, but they won’t help anymore when the robot uprising starts.

Continue reading “Atlas is Back with Some New Moves”

Laser Noob: Getting Started With the K40 Laser

Why spend thousands on a laser cutter/engraver when you can spend as little as $350 shipped to your door? Sure it’s not as nice as those fancy domestic machines, but the plucky K40 is the little laser that can. Just head on down to Al’s Laser Emporium and pick one up.  Yes, it sounds like a used car dealership ad, but how far is it from the truth? Read on to find out!

Laser cutting and engraving machines have been around for decades. Much like 3D printers, they were originally impossibly expensive for someone working at home. The closest you could get to a hobbyist laser was Epilog laser, which would still cost somewhere between $10,000 and $20,000 for a small laser system. A few companies made a go with the Epilog and did quite well – notably Adafruit used to offer laptop laser engraving services.

Over the last decade or so things have changed. China got involved, and suddenly there were cheap lasers on the market. Currently, there are several low-cost laser models available in various power levels. The most popular is the smallest – a 40-watt model, dubbed the K40. There are numerous manufacturers and there have been many versions over the years. They all look about the same though: A blue sheet metal box with the laser tube mounted along the back. The cutting compartment is on the left and the electronics are on the right. Earlier versions came with Moshidraw software and a parallel interface.

Continue reading “Laser Noob: Getting Started With the K40 Laser”

Live Streaming Goes Pro with a Hacked Backpack

If you haven’t been paying attention, live streaming has become a big business. Streamers are getting out of their basements and moving around among us. While IRL streams may not be our cup of tea, the technology behind creating a solid high upstream bandwidth wireless internet connection is. Sure you can stream with a phone, the top streamers want something a bit more reliable. Enter [Gunrun], who has designed a backpack just for mobile streaming.

The backpack starts with a Sony AS300  Camera. [Gunrun] likes this particular camera for its exceptional audio capabilities. Network connections are handled with no less than four LTE modems. You never know which carrier will have good service out in the field, so the modems are available from a variety of carriers.

The real problem is bonding connections between LTE modems from various carriers, setting up streaming accounts, and piping captured data from an HDMI capture over those accounts. The average hacker would go at it with an HDMI capture card and a Linux Laptop. Most streamers need a more plug and play solution though, so [Gunrun] uses a LiveU Solo HDMI video encoder for the task.

This isn’t a cheap solution, all those parts together along with a beefy battery, LTE data plans, and of course a backpack to hold it all makes for a package north of $2000. Even at this price, plenty of streamers have been following [Gunrun’s] instructions and building their own setup.

Hackers do a bit of live streaming too – check out how [cnlohr] reverse engineered the Vive, while valve engineers played along in the chat.

Real or Fake? Robot Uses AI to Find Waldo

The last few weeks have seen a number of tech sites reporting on a robot which can find and point out Waldo in those “Where’s Waldo” books. Designed and built by Redpepper, an ad agency. The robot arm is a UARM Metal, with a Raspberry Pi controlling the show.

A Logitech c525 webcam captures images, which are processed by the Pi with OpenCV, then sent to Google’s cloud-based AutoML Vision service. AutoML is trained with numerous images of Waldo, which are used to attempt a pattern match.  If a pattern is found, the coordinates are fed to PYUARM, and the UARM will literally point Waldo out.

While this is a totally plausible project, we have to admit a few things caught our jaundiced eye. The Logitech c525 has a field of view (FOV) of 69°. While we don’t have dimensions of the UARM Metal, it looks like the camera is less than a foot in the air. Amazon states that “Where’s Waldo Delux Edition” is 10″ x 0.2″ x 12.5″ inches. That means the open book will be 10″ x 25″. The robot is going to have a hard time imaging a surface that large in a single image. What’s more, the c525 is a 720p camera, so there isn’t a whole lot of pixel density to pattern match. Finally, there’s the rubber hand the robot uses to point out Waldo. Wouldn’t that hand block at least some of the camera’s view to the left?

We’re not going to jump out and call this one fake just yet — it is entirely possible that the robot took a mosaic of images and used that to pattern match. Redpepper may have used a bit of movie magic to make the process more interesting. What do you think? Let us know down in the comments!