OpenMIDIStomper Makes Sure Your Gear Does What Your Foot Says

If you’re a solo musician, you probably have lots of gear you’d like to control, but you don’t have enough hands. You can enlist your feet, but your gear might not have foot-suitable interfaces as standard. For situations like these, [Nerd Musician] created the OpenMIDIStomper.

The concept is simple enough—the hardy Hammond enclosure contains a bunch of foot switches and ports for external expression pedals. These are all read by an Arduino Pro Micro, which is responsible for turning these inputs into distinct MIDI outputs to control outboard gear or software. It handles this via MIDI over USB. The MIDI commands sent for each button can be configured via a webpage. Once you’ve defined all the messages you want to send, you can export your configuration from the webpage by cutting and pasting it into the Arduino IDE and flashing it to the device itself.

We’ve featured some great MIDI controllers over the years, like this impressive parts bin build.

Continue reading “OpenMIDIStomper Makes Sure Your Gear Does What Your Foot Says”

Building A Piezo Noise Box

The humble piezo element is often used as little more than a buzzer in many projects. However, you can do more with them, as [Something Physical] demonstrates with their nifty piezo noise box. Check out the video (and audio) below.

The construction is simple enough, attractive in its own way, with a rugged junk-assembly sort of style. The video starts out by demonstrating the use of a piezo element hooked up as a simple contact microphone, before developing it into something more eclectic.

The basic concept: Mount the piezo element to a metal box fitted with a variety of oddball implements. What kind of implements? Spiralled copper wires, a spring, and parts of a whisk. When struck, plucked, or twanged, they conduct vibrations through the box, the microphone picks them up, and the box passes the sound on to other audio equipment.

It might seem frivolous, but it’s got some real value for avant-garde musical experimentation. In particular, if you’re looking for weird signals to feed into your effects rack or modular synth setup, this is a great place to start.

We’ve seen piezos put to other percussive uses before, too.

Continue reading “Building A Piezo Noise Box”

A C-shaped wooden frame is shown surrounding a circular tongue drum. The wooden frame holds eight black adjustable arms, at the ends of which are mounted solenoids, positioned just above the surface of the drum.

Giving A Drum MIDI Input With Lots Of Solenoids

As far as giving mechanical instruments electronic control goes, drums are probably the best candidate for conversion; learning to play them is challenging and loud for a human, but they’re a straightforward matter for a microcontroller. [Jeremy Cook]’s latest project takes this approach by using an Arduino Opta to play a tongue drum.

[Jeremy]’s design far the drum controller was inspired by the ring-shaped arrangement of the Cray 2 supercomputer. A laser-cut MDF frame forms a C-shape around the tongue drum, and holds eight camera mount friction arms. Each friction arm holds a solenoid above a different point on the drum head, making it easy to position them. A few supports were 3D-printed, and some sections of PVC tubing form pivots to close the ring frame. [Jeremy] found that the the bare metal tips of the solenoids made a harsh sound against the drum, so he covered the tips of six solenoids with plastic caps, while the other two uncoated tips provide an auditory contrast.

The Arduino Opta is an open-source programmable logic controller normally intended for industrial automation. Here, its silent solid-state relays drive the solenoids, as [Jeremy]’s done before in an earlier experiment. The Opta is programmed to accept MIDI input, which [Jeremy] provided from two of the MIDI controllers which we’ve seen him build previously. He was able to get it working in time for the 2024 Orlando Maker Faire, which was the major time constraint.

Of course, for a project like this you need a MIDI controller, and we’ve previously seen [Jeremy] convert a kalimba into such a controller. We’ve seen this kind of drum machine at least once before, but it’s more common to see a purely electronic implementation.

A man is shown performing a wheelie on a red bicycle in a classroom. In the background, a projector is displaying a phone screen running an indistinct app.

An Adaptive Soundtrack For Bike Tricks

If you’ve put in all the necessary practice to learn bike tricks, you’d probably like an appropriately dramatic soundtrack to accompany your stunts. A team of students working on a capstone project at the University of Washington took this natural desire a step further with the Music Bike, a system that generates adaptive music in response to the bike’s motion.

The Music Bike has a set of sensors controlled by an ESP32-S3 mounted beneath the bike seat. The ESP32 transmits the data it collects over BLE to an Android app, which in turn uses the FMOD Studio adaptive sound engine to generate the music played. An MPU9250 IMU collects most position and motion data, supplemented by a hall effect sensor which tracks wheel speed and direction of rotation.

When the Android app receives sensor data, it performs some processing to detect the bike’s actions, then uses these to control FMOD’s output. The students tried using machine learning to detect bike tricks, but had trouble with latency and accuracy, so they switched to a threshold classifier. They were eventually able to detect jumps, 180-degree spins, forward and reverse motion, and wheelies. FMOD uses this information to modify music pitch, alter instrument layering, and change the track. The students gave an impressive in-class demonstration of the system in the video below (the demonstration begins at 4:30).

Surprisingly enough, this isn’t the first music-producing bike we’ve featured here. We’ve also seen a music-reactive bike lighting system.

Thanks to [Blake Hannaford] for the tip!

Piano Doorbell Adds Music To Your Home

Regular ding-dong doorbells are fun and all, but it can be nice to put something a little more special by your front door. To that end, [Arpan Mondal] built this neat little piano doorbell to make visiting his home just a touch more fun.

The heart of the build is an ESP32 microcontroller. It’s responsible for reading the state of five 3D printed piano keys: three white, two black. It’s nowhere near a full octave, but for a doorbell, it’s enough. When a key is pressed, the ESP32 plays a short audio sample embedded within the program code itself. This is done with the help of a PAM8403 audio amplifier module, which jacks up the output to drive the doorbell speaker loud enough to be heard throughout the home. It’s not exactly studio quality audio, but for a doorbell, it sounds pretty solid.

If you’re looking for a fun and easy build to make your home just a little bit more whimsical, it’s hard to beat something like this. Your musical friends will love it—they might even develop an intro riff of their very own. We’ve featured some other fun doorbell builds before, too—the best of which are the Halloween projects.
Continue reading “Piano Doorbell Adds Music To Your Home”

When Wireless MIDI Has Latency, A Hardwired Solution Saves The Day

[Moby Pixel] wanted to build a fun MIDI controller. In the end, he didn’t build it just once, but twice—with the aim of finding out which microcontroller was most fit for this musical purpose. Pitted against each other? The ESP32 and Raspberry Pi Pico.

The MIDI controller itself is quite fetching. It’s built with a 4 x 4 array of arcade buttons to act as triggers for MIDI notes or events. They’re assembled in a nice wooden case with a lovely graphic wrap on it. The buttons themselves are wired to a microcontroller, which is then responsible for sending MIDI data to other devices.

At this point, the project diverges. Originally, [Moby Pixel] set the device up to work with an ESP32 using wireless MIDI over Bluetooth. However, he soon found a problem. Musical performance is all about timing, and the ESP32 setup was struggling with intermittent latency spikes that would ruin the performance. Enter the Raspberry Pi Pico using MIDI over USB. The hardwired solution eliminated the latency problems and made the controller far more satisfying to use.

There may be solutions to the latency issue with the wireless ESP32 setup, be they in code, hardware configuration, or otherwise. But if you want to play with the most accuracy and the minimum fuss, you’ll probably prefer the hardwired setup.

Latency is a vibe killer in music as we’ve explored previously.

Continue reading “When Wireless MIDI Has Latency, A Hardwired Solution Saves The Day”

Building An Analog Echo Plate

These days, when you think reverb, you probably think about a guitar pedal or a plugin in your audio software. But you can also create reverb with a big metal plate and the right supporting electronics. [Tully] from [The Tul Studio] shows us how.

Basically, if you’ve ever smacked a big sheet of metal and heard the thunderous, rippling sound it makes, you already understand the concept here. To turn it into a studio effect, you use transducers to deliver the sound into the plate of metal, and then microphones to pick it back up again at some other point on the plate. Since the sound takes time to travel through the plate, you get a reverb effect.

[The Tul Studio] used a huge cold-rolled steel plate, standing one meter wide and two meters tall. The plate itself is hung from picture chain, which is strong enough to carry its weight. Old car tweeters are repurposed to act as pickups, while a larger speaker is used to drive sound into the plate. “The key to making it sound not like a tin can is the actual EQ and the electronics,” [Tully] explains, providing resources for this purposes.

We love lots of lovely reverbing things around these parts; oddball delays, too! Video after the break.

Continue reading “Building An Analog Echo Plate”