Hurdy-posting Continues With The Balfolk Boombox, A Synth Gurdy

The Hurdy-Gurdy continues to worm its way into pole position as the hacker’s instrument. How else could you explain a medieval wheel fiddle being turned into a synthesizer? Move over, keytar — [Rory Scammell]’s Balfolk Boombox is the real deal.

It began life as MIDI-outputting SAMgurdy by [Sam Palmer], which we sadly missed covering (though we did feature a MIDI-gurdy a few years back) but this boombox does far more than just MIDI samples. In a sentence no one ever thought would be penned, this instrument puts a Eurorack on a Hurdy-Gurdy for the ultimate synthwave bardcore mashup. There’s an analog synth, there’s a drum machine, there’s modularity to do whatever [Rory] should desire. There are also sixteen sampled instruments available at the push of a button, including multiple analog Hurdy-Gurdies.

It is, as [Rory] says, “a gig in a box”. There’s no point trying to describe it all in words: it really must be heard to be believed, so check out the demo video embedded below, and if you’re hankering for more info, he produced a fifteen minute in-depth video and if you can’t get enough of the sound, here’s a demo with all 16 sampled instruments. We’re pretty sure one of them is the Sega soundfont, and the 8-bit samples are absolutely GameBoy.

How, exactly, we fell in love with the hurdy-gurdy has fallen into mystery, but we’ve been filling up the hurdy-gurdy tag lately, on your suggestions. This one is thanks to a tip from [Physics Dude] in a comment– thanks for that, by the way– and the tips line remains open if the internet has not finally been scoured of all content both hurdy and gurdy. 

Continue reading “Hurdy-posting Continues With The Balfolk Boombox, A Synth Gurdy”

The Cantareel Is Hurdy-Guitar Turned Inside Out

Sometimes, all you need to make something work is to come at it from a different angle from anyone else — flip the problem on its head, so to speak. That’s what [Keizo Ishibashi] did to create his Cantareel, a modified guitar that actually sounds like a hurdy-gurdy.

We wrote recently about a maker’s quest to create just such a hybrid instrument, and why it ended in failure: pressing strings onto the fretboard also pushed them tighter to the wheel, ruining the all-important tension. To recap, the spinning wheel of a hurdy-gurdy excites the strings exactly like a violin bow, and like a violin bow, the pressure has to be just right. There’s no evidence [Keizo Ishibashi] was aware of that work, but he solved the problem regardless, simply by thinking outside the box — the soundbox, that is.

Unlike a hurdy-gurdy, the Cantareel keeps its wheel outside the soundbox. The wheel also does not rub directly upon the strings: instead, it turns what appears to be a pair of o-rings. Each rosined o-ring bows 2 of the guitar’s strings, giving four strings a’ singing. (Five golden rings can only be assumed.) The outer two strings of this ex-six-string are used to hold the wheel assembly in place by feeding through holes on the mounting arms. The guitar is otherwise unmodified, making this hack reversible.

It differs from the classic hurdy-gurdy in one particular: on the Cantareel, every string is a drone string. There’s no way to keep the rubber rings from rubbing against the strings, so all four are always singing. This may just be the price you pay to get that smooth gurdy sound out of a guitar form factor. We’re not even sure it’s right to call it a price when it sounds this good.

Continue reading “The Cantareel Is Hurdy-Guitar Turned Inside Out”

The crank/keying assembly

Hacking A Guitar Into A Hurdy-Gurdy Hybrid With 3D Prints

If you’re looking for a long journey into the wonderful world of instrument hacking, [Arty Farty Guitars] is six parts into a seven part series on hacking an existing guitar into a guitar-hurdy-gurdy-hybrid, and it is “a trip” as the youths once said. The first video is embedded below.

The Hurdy-Gurdy is a wheeled instrument from medieval europe, which you may have heard of, given the existence of the laser-cut nerdy-gurdy, the electronic midi-gurdy we covered here, and the digi-gurdy which seems to be a hybrid of the two. In case you haven’t seen one before, the general format is for a hurdy-gurdy is this : a wheel rubs against the strings, causing them to vibrate via sliding friction, providing a sound not entirely unlike an upset violin. A keyboard on the neck of the instrument provides both fretting and press the strings onto the wheel to create sound. 

[Arty Farty Guitars] is a guitar guy, so he didn’t like the part with about the keyboard. He wanted to have a Hurdy Gurdy with a guitar fretboard. It turns out that that is a lot easier said than done, even when starting with an existing guitar instead of from scratch, and [Arty Farty Guitar] takes us through all of the challenges, failures and injuries incurred along the way. 

Probably the most interesting piece of the puzzle is the the cranking/keying assembly that allows one hand to control cranking the wheel AND act as keyboard for pressing strings into the wheel. It’s key to the whole build, as combining those functions on the lower hand leaves the other hand free to use the guitar fretboard half of the instrument. That controller gets its day in video five of the series. It might inspire some to start thinking about chorded computer inputs– scrolling and typing?

If you watch up to the sixth video, you learn that that the guitar’s fretting action is ultimately incompatible with pressing strings against the wheel at the precise, constant tension needed for good sound. To salvage the project he had to switch from a bowing action with a TPU-surfaced wheel to a sort of plectrum wheel, creating an instrument similar to the thousand-pick guitar we saw last year.

Even though [Arty Farty Guitars] isn’t sure this hybrid instrument can really be called a Hurdy Gurdy anymore, now that it isn’t using a bowing action, we can’t help but admire the hacking spirit that set him on this journey. We look forward to the promised concert in the upcoming 7th video, once he figures out how to play this thing nicely.

Know of any other hacked-together instruments that possibly should not exist? We’re always listening for tips. 

 

 

 

When Is A Synth A Woodwind? When It’s A Pneumatone

Ever have one of those ideas that’s just so silly, you just need to run with it? [Chris] from Sound Workshop ran into that when he had the idea that became the Pneumatone: a woodwind instrument that plays like a synth.

In its 3D printed case, it looks like a giant polyphonic analog synth, but under the plastic lies a pneumatic heart: the sound is actually being made by slide whistles. We always thought of the slide whistle as a bit of a gag instrument, but this might change our minds. The sliders on the synth-box obviously couple to the sliders in the whistles. The ‘volume knobs’ are actually speed controllers for computer fans that feed air into the whistles. The air path is possibly not ideal– there’s a bit of warbling in the whistles at some pitches– but the idea is certainly a fun one. Notes are played by not blocking the air path out the whistle, as you can see in the video embedded below.

Since the fans are always on, this is an example of a drone instrument, like bagpipes or the old hacker’s favourite, the hurdy gurdy. [Chris] actually says in his tip– for which we are very thankful– that this project takes inspiration not from those projects but from Indian instruments like the Shruthi Box and Tanpura. We haven’t seen those on Hackaday yet, but if you know of any hacks involving them, please leave a tip.

Continue reading “When Is A Synth A Woodwind? When It’s A Pneumatone”

OpenMIDIStomper Makes Sure Your Gear Does What Your Foot Says

If you’re a solo musician, you probably have lots of gear you’d like to control, but you don’t have enough hands. You can enlist your feet, but your gear might not have foot-suitable interfaces as standard. For situations like these, [Nerd Musician] created the OpenMIDIStomper.

The concept is simple enough—the hardy Hammond enclosure contains a bunch of foot switches and ports for external expression pedals. These are all read by an Arduino Pro Micro, which is responsible for turning these inputs into distinct MIDI outputs to control outboard gear or software. It handles this via MIDI over USB. The MIDI commands sent for each button can be configured via a webpage. Once you’ve defined all the messages you want to send, you can export your configuration from the webpage by cutting and pasting it into the Arduino IDE and flashing it to the device itself.

We’ve featured some great MIDI controllers over the years, like this impressive parts bin build.

Continue reading “OpenMIDIStomper Makes Sure Your Gear Does What Your Foot Says”

Building A Piezo Noise Box

The humble piezo element is often used as little more than a buzzer in many projects. However, you can do more with them, as [Something Physical] demonstrates with their nifty piezo noise box. Check out the video (and audio) below.

The construction is simple enough, attractive in its own way, with a rugged junk-assembly sort of style. The video starts out by demonstrating the use of a piezo element hooked up as a simple contact microphone, before developing it into something more eclectic.

The basic concept: Mount the piezo element to a metal box fitted with a variety of oddball implements. What kind of implements? Spiralled copper wires, a spring, and parts of a whisk. When struck, plucked, or twanged, they conduct vibrations through the box, the microphone picks them up, and the box passes the sound on to other audio equipment.

It might seem frivolous, but it’s got some real value for avant-garde musical experimentation. In particular, if you’re looking for weird signals to feed into your effects rack or modular synth setup, this is a great place to start.

We’ve seen piezos put to other percussive uses before, too.

Continue reading “Building A Piezo Noise Box”

A C-shaped wooden frame is shown surrounding a circular tongue drum. The wooden frame holds eight black adjustable arms, at the ends of which are mounted solenoids, positioned just above the surface of the drum.

Giving A Drum MIDI Input With Lots Of Solenoids

As far as giving mechanical instruments electronic control goes, drums are probably the best candidate for conversion; learning to play them is challenging and loud for a human, but they’re a straightforward matter for a microcontroller. [Jeremy Cook]’s latest project takes this approach by using an Arduino Opta to play a tongue drum.

[Jeremy]’s design far the drum controller was inspired by the ring-shaped arrangement of the Cray 2 supercomputer. A laser-cut MDF frame forms a C-shape around the tongue drum, and holds eight camera mount friction arms. Each friction arm holds a solenoid above a different point on the drum head, making it easy to position them. A few supports were 3D-printed, and some sections of PVC tubing form pivots to close the ring frame. [Jeremy] found that the the bare metal tips of the solenoids made a harsh sound against the drum, so he covered the tips of six solenoids with plastic caps, while the other two uncoated tips provide an auditory contrast.

The Arduino Opta is an open-source programmable logic controller normally intended for industrial automation. Here, its silent solid-state relays drive the solenoids, as [Jeremy]’s done before in an earlier experiment. The Opta is programmed to accept MIDI input, which [Jeremy] provided from two of the MIDI controllers which we’ve seen him build previously. He was able to get it working in time for the 2024 Orlando Maker Faire, which was the major time constraint.

Of course, for a project like this you need a MIDI controller, and we’ve previously seen [Jeremy] convert a kalimba into such a controller. We’ve seen this kind of drum machine at least once before, but it’s more common to see a purely electronic implementation.