Controlling A Quadcopter With One Dead Motor

Quadcopters have incredible flying abilities, but if one loses just a single motor, it drops like a rock. Researchers from the University of Zurich’s Robotics and Perception Group have proven that this does not need to be the case by keeping a quadcopter flying with only three motors.

A quadcopter usually has enough thrust to stay aloft with only three motors, but it will spin uncontrollably in the yaw axis. It is impossible to stop a quadcopter from spinning, so the focus for researchers was on keeping the drone controllable while it’s spinning. To achieve this, accurate position and motion estimation is required, so they attached a pair of cameras to the bottom of the craft for visual-inertial odometry (VIO). One is a normal optical camera, while the other is an event camera, which has pixels that can independently respond to changes in light as they occur. This means that it has better low light performance and does not suffer from motion blur.

The feeds from the cameras are analyzed in real-time by an onboard Nvidia Jetson TX2 for state estimation, which is then used with an optical range sensor and onboard IMU to maintain controlled flight, as demonstrated in the video after the break. The research paper is free to read, and all the code is available on GitHub.

New developments in drone control schemes are always fascinating, like this hexacopter with an innovative motor layout to achieve six degrees of freedom, or a conventional helicopter with a virtual swash plate.
Continue reading “Controlling A Quadcopter With One Dead Motor”

The Drone That Can Play Dodgeball

Drones (and by that we mean actual, self-flying quadcopters) have come a long way. Newer ones have cameras capable of detecting fast moving objects, but aren’t yet capable of getting out of the way of those objects.  However, researchers at the University of Zurich have come up with a drone that can not only detect objects coming at them, but can quickly determine that they’re a danger and get out of the way.

The drone has cameras and accompanying algorithms to detect the movement in the span of a couple of milliseconds, rather than the 20-40 milliseconds that regular quad-copters would take to detect the movement. While regular cameras send the entire screens worth of image data to the copter’s processor, the cameras on the University’s drone are event cameras, which use pixels that detect change in light intensity and only they send their data to the processor, while those that don’t stay silent.

Since these event cameras are a new technology, the quadcopter processor required new algorithms to deal with the way the data is sent. After testing and tweaking, the algorithms are fast enough that the ‘copter can determine that an object is coming toward it and move out of the way.

It’s great to see the development of new techniques that will make drones better and more stable for the jobs they will do. It’s also nice that one day, we can fly a drone around without worrying about the neighborhood kids lobbing basketballs at them. While you’re waiting for your quadcopter delivered goods, check out this article on a quadcopter testbed for algorithm development.