High Tech Drone Scarecrows Can Make Airports Safer

If you pay attention to airplane news — or you watched the film Sully — you know planes have problems with birds. Sully was about US Airways flight 1549 which struck a flock of geese and ditched in the Hudson river.  Engineers at Caltech say that was the inspiration for them to develop a control algorithm that enables a single drone scarecrow to herd flocks of birds away from airports.

Airports have tried a lot of things to discourage birds ranging from trained falcons to manually-piloted drones. Apparently, herding birds is harder than you would think. If you fly the drone too far from a flock, it will ignore the threat. If you get too close, the flock will scatter making it both threaten a larger area and harder to control.

Continue reading “High Tech Drone Scarecrows Can Make Airports Safer”

Hanky-Deprived Drones Taste Whale Snot for Science

A whole world of biomass floats in the boogers of a whale’s exhaust, and it’s a biologist’s dream to explore it. Whale snot carries everything from DNA samples to hormone signatures. But getting close enough to a surfacing whale for long enough to actually sample this snot turns out to be a nightmare when done by boat. Researcher [Iain Kerr] and a team from Olin College of Engineering thought, why not use a drone instead? Behold, the Snotbot was born!

Snotbot is essentially a petri-dish-equipped commercial drone that users can pilot into the exhaust of a whale to collect samples before the cetacean dives back under. After 7 missions and over 500 collected samples, Snotbot is putting-to-rest years of frustration from researchers anticipating their next chance for a shot of snot. Along the way, the team have also leveraged it to image the whale’s fluke (a fingerprint equivalent), drop underwater mics, and collect poo samples. As opposed to darts, Snotbot is non-invasive, and the whales don’t seem to mind (or even notice) who’s downstream of their boogers.

Drones are almost ubiquitous at this point in our lives–to the point where they now fall under regulations by the US government. With so many of us building our own drones at home, it’s wonderful to see groups starting to ask the next question: cool drone; now what? With reliable drones at prices that are within reach for the everyday citizen, we’re excited that we will see dozens of applications that leverage this new skyward-bound platform over the coming years. If you can’t wait, have a quick look back in time, where drones are doing maritime deliveries and blowing up debris.

Quadcopter Hardware Gets Classic Lake Bed Test

You’d be hard pressed to find an aircraft that wasn’t designed and tested without extensive use of simulation. Whether it’s the classic approach of using a scale model in a wind tunnel or more modern techniques such as computational fluid dynamics, a lot of testing happens before any actual hardware gets bolted together. But at some point the real deal needs to get a shakedown flight, and historically a favorite testing ground has been the massive dry lake beds in the Western United States. The weather is always clear, the ground is smooth, and there’s nobody for miles around.

Thanks to [James] and [Tyler] at Propwashed, that same classic lake bed approach to real-world testing has now been brought to the world of high performance quadcopter gear. By mounting a computer controlled thrust stand to the back of their pickup truck and driving through the El Mirage dry lake bed in the Mojave Desert, they were able to conduct realistic tests on how different propellers operate during flight. The data collected provides an interesting illustration of the inverse relationship airspeed has with generated thrust, but also shows that not all props are created equal.

The first post in the series goes over their testing set-up and overall procedure. On a tower in the truck’s bed a EFAW 2407 2500kV motor was mounted on a Series 1520 thrust stand by RCBenchmark. This stand connects to the computer and offers a scripted environment which can be used to not only control the motor but monitor variables like power consumption, RPM, and of course thrust. While there was some thought given to powering the rig from the truck’s electrical system, in the end they used Turnigy 6000mAh 4S battery packs to keep things simple.

A script was written for the thrust stand which would ramp the throttle from 0% up to 70% over 30 seconds, and then hold it at that level for 5 seconds. This script was run when the truck was at a standstill, and then repeated with the truck travelling at increasingly faster speeds up to 90 MPH. This procedure was repeated for each of the 15 props tested, and the resulting data graphed to compare how they performed.

The end result was that lower pitch props with fewer blades seemed to be the best overall performers. This isn’t a huge surprise given what the community has found through trial and error, but it’s always good to have hard data to back up anecdotal findings. There were however a few standout props which performed better at high speeds than others, which might be worth looking into if you’re really trying to push the envelope in terms of airspeed.

As quadcopters (or “drones”, if you must) have exploded in popularity, we’re starting to see more and more research and experimentation done with RC hardware. From a detailed electrical analysis of hobby motors to quantifying the latency of different transmitters.

Casting Tour-De-Force Results In Swashplate For Scale Helicopter

While quadcopters seem to attract all the attention of the moment, spare some love for the rotary-wing aircraft that started it all: the helicopter. Quads may abstract away most of the aerodynamic problems faced by other rotorcraft systems through using software, but the helicopter has to solve those problems mechanically. And they are non-trivial problems, since the pitch of the rotors blades has to be controlled while the whole rotor disk is tilted relative to its axis.

The device that makes this possible is the swashplate, and its engineering is not for the faint of heart. And yet [MonkeyMonkeey] chose not only to build a swashplate from scratch for a high school project, but since the parts were to be cast from aluminum, he had to teach himself the art of metal casting from the ground up. That includes building at least three separate furnaces, one of which was an electric arc furnace based on an arc welder with carbon fiber rods for electrodes (spoiler alert: bad choice). The learning curves were plentiful and steep, including getting the right sand mix for mold making and metallurgy by trial and error.

With some machining help from his school, [MonkeyMonkeey] finally came up with a good design, and we can’t wait to see what the rest of the ‘copter looks like. As he gets there, we’d say he might want to take a look at this series of videos explaining the physics of helicopter flight, but we suspect he’s well-informed on that topic already.

[via r/DIY]

Simple Quadcopter Testbed Clears The Air For Easy Algorithm Development

We don’t have to tell you that drones are all the rage. But while new commercial models are being released all the time, and new parts get released for the makers, the basic technology used in the hardware hasn’t changed in the last few years. Sure, we’ve added more sensors, increased computing power, and improved the efficiency, but the key developments come in the software: you only have to look at the latest models on the market, or the frequency of Git commits to Betaflight, Butterflight, Cleanflight, etc.

With this in mind, for a Hackaday prize entry [int-smart] is working on a quadcopter testbed for developing algorithms, specifically localization and mapping. The aim of the project is to eventually make it as easy as possible to get off the ground and start writing code, as well as to integrate mapping algorithms with Ardupilot through ROS.

The initial idea was to use a Beaglebone Blue and some cheap hobby hardware which is fairly standard for a drone of this size: 1250 kv motors and SimonK ESCs, mounted on an f450 flame wheel style frame. However, it looks like an off-the-shelf solution might be even simpler if it can be made to work with ROS. A Scanse Sweep LIDAR sensor provides point cloud data, which is then munched with some Iterative Closest Point (ICP) processing. If you like math then it’s definitely worth reading the project logs, as some of the algorithms are explained there.

It might be fun to add FPV to this system to see how the mapping algorithms are performing from the perspective of the drone. And just because it’s awesome. FPV is also a fertile area for hacking: we particularly love this FPV tracker which rotates itself to get the best signal, and this 3D FPV setup using two cameras.

Fail of the Week: Two Rotors Are Not Better Than Four

Fair warning: [Paweł Spychalski]’s video is mostly him talking about how bad his “dualcopter” ended up. There are a few sequences of the ill-fated UAV undergoing flight tests, most of which seem to end with it doing a reasonable impression of a post-hole auger. We have to admit that it’s a pretty poor drone. But one can only truly fail if one fails to have some fun doing it, [Paweł] enjoyed considerable success, at least judging by the glee with which he repeatedly cratered the craft.

The overall idea seems to make sense, with coaxial props mounted in the middle of a circular 3D-printed frame. Mounted below the props are crossed vanes controlled by two servos. The vanes sit in the rotor wash and provide pitch and roll control, while yaw and thrust are controlled by varying the speeds of the counter-rotating props. [Paweł] knew going in that this was a sketchy aerodynamic design, and was surprised it performed as well as it did. But with ground effects limiting roll and pitch control close to the ground, the less-than-adequate thrust due to turbulence between the rotors, and the tendency for the center of mass and the center of gravity to get out whack with each other, all made for a joyously unstable and difficult to control aircraft.

Despite the poor performance, [Paweł] has plans for a Mark II dualrotor, a smaller craft with some changes based on what he learned. He’s no slouch at pushing the limits with multirotors, with 3D-printed racing quad frames and using LoRa for control beyond visual range. Still, we’re sure he’d appreciate constructive criticism in the comments, and we wish him luck with the next one.

Continue reading “Fail of the Week: Two Rotors Are Not Better Than Four”

Laser-Powered Flying Machine Weighs Milligrams

We’ve become used to seeing some beautiful hand-made creations at the smaller end of the flying machine scale, tiny aircraft both fixed and rotary wing. An aircraft that weighs a few grams is entirely possible to build, such have been the incredible advances in component availability.

But how much smaller can a working aircraft be made? Given a suitable team and budget, how about into the milligrams? [Dr. Sawyer Fuller] and his team at the University of Washington have made an ornithopter which may be the lightest aircraft yet made, using a piezoelectric drive to flap flexible wings. That in itself isn’t entirely new, but whereas previous efforts had relied on a tether wire supplying electricity, the latest creation flies autonomously with its power supplied by laser to an on-board miniature solar cell that protrudes above the craft on its wires.

Frustratingly Dr. Fuller’s page on the machine is lighter on detail than we’d like, probably because they are saving the juicy stuff for a big reveal at a conference presentation. It is however an extremely interesting development from a technical perspective, as well as opening up an entirely new front in the applications for flying machines. Whatever happens, we’ll keep you posted.

You can see the craft in the video below the break, and if you’re interested lies with more conventional tiny machines take a look at the creator of a 2.9g Mustang model.

Continue reading “Laser-Powered Flying Machine Weighs Milligrams”