Full-Scale Flying DeLorean Gets Closer To Liftoff

These days, even hobbyist multi-rotor aircraft are capable of carrying considerable payloads. For example, the test rig that [Brian Brocken] recently put together should be able to loft more than 80 pounds (36 kilograms) without breaking a sweat. That would be a whole lot of camera gear or other equipment, but in this case, he’s planning on carrying something a bit more interesting: a full-scale foam DeLorean.

We first covered this project in December of last year, when [Brian] started using a massive robotic arm to carefully cut the body and individual parts of the car out of expanded polystyrene foam. He estimated at the time the body should weigh in at less than 30 lbs (14 kg), so he’d need to build a quadcopter with a maximum lift of roughly twice that much to keep the performance where he wanted it.

Continue reading “Full-Scale Flying DeLorean Gets Closer To Liftoff”

New Quadcopter Speed World Record Set At Nearly 500 Km/h

Making a quadcopter go fast would seem to be quite simple: just strap on powerful motors, aim the quadcopter roughly at where you want it to go fast, and let ‘er rip. Because of aerodynamics and other pesky physical laws there are a few complications to this, of course, but this didn’t deter [Luke Bell] and his father [Mike Bell] from nailing the Guinness World Record for remote-controlled quadcopters on April 21, 2024. During the official run, a top speed of 480.23 km/h was recorded, making it considerably faster than the first version they made, which hit a measly 400 km/h.

For this second iteration of the ‘got to go fast’ quadcopter, the design was scaled up, with more powerful motors and associated electronics added. Naturally, when you’re pushing brushless motors and their ESCs to their limits, stuff can get a bit hot due to the immense currents flowing through the system. This resulted in a number of battery, wire and other fires. Fortunately, the worrying aspect of in-flight stability got addressed pretty well courtesy of a professional drone trainer, and ultimately the world record attempt went off without a hitch.

An endurance test was also attempted, which reached 7.5 km at 180 km/h, and with the clear canopy in from of the camera removed, visual performance was pretty stunning, while still easily reaching 400 km/h. This might make it the perfect high-speed chase camera system.

Thanks to [Craig] for the tip.

Continue reading “New Quadcopter Speed World Record Set At Nearly 500 Km/h”

ESP-Drone: Building An ESP32-Based Quadcopter For Not Much Cash

What’s the cheapest quadcopter you can build? As [Circuit Digest] demonstrates with their variant of the ESP-Drone project by Espressif, you only need a minimum of parts: an ESP32 MCU, an inertial measurement unit (IMU) such as the MPU6050, and four MOSFETs to drive the brushless DC motors. As the PCB also forms the structural frame and landing struts for the quadcopter, not even a 3D printer is needed. All told, [Circuit Digest] figures the total BOM comes in at around 1,000 Indian Rupees, or about $12 USD.

The fully assembled ESP-Drone flying around. (Credit: Circuit Digest)
The fully assembled ESP-Drone flying around. (Credit: Circuit Digest)

While this [Circuit Digest] project provides basic IMU functionality, the Espressif project also has a few expansion boards detailed on its hardware page, depending on the base model of the mainboard you pick. The [Circuit Digest] project follows the ESPlane-V2-S2 version with no expansion boards, but the ESP32-S2-Drone V1.2 mainboard can be extended with position-hold, pressure and compass modules, as well as custom boards.

As a derivative of the Bitcraze Crazyflie project, the ESP-Drone firmware also supports the rather nifty cfclient software for remote monitoring, logging and control. This may also be in the [Circuit Digest] firmware, but wasn’t listed among the features.

Continue reading “ESP-Drone: Building An ESP32-Based Quadcopter For Not Much Cash”

A screenshot of the drone monitoring application, showing spoofed drones and their coordinates

Can’t Disable DJI Drone ID? Spoof It With An ESP!

We have been alerted to a fun tool, a DJI DroneID spoofer software for ESP8266/ESP32 and some other popular MCUs. Last year, we’ve told you about DJI DroneID — a technology DJI added to their drones, which broadcasts data including the drone operator’s GPS position, which, in turn, appears to have resulted in Ukrainian casualties in the Ukraine war. The announcement tweet states that DJI has added mechanisms from downgrading firmware. Hence, the spoofer.

There’s no other hardware needed, well other than an ESP8266 or ESP32 devboard, anyway. After the break you can find a video tutorial from [Joshua Bardwell] that shows you how to upload the code using Arduino IDE, and even going through coordinate tweaks. If you ever reminisced about the concept of throwies and were wondering what kind of useful, well, there’s your answer: clone the Git repo, compile it, program some interesting coordinates in, and witness the imaginary drones fly.

All in all, we get a lovely addition to our shenanigan toolkits. Surely, someone could use a neural network to distinguish real drones from fake ones, but it’s nothing that can’t be solved with a bit of code. Looking for a less daring hack? Well, you can always add some automation to your DJI drone by poking at the RGB LED signals.

Continue reading “Can’t Disable DJI Drone ID? Spoof It With An ESP!”

New Robots To Explore New Areas Of Japan’s Fukushima Daiichi Nuclear Plant

During a press event on January 23rd, Tokyo Electric Power Company (TEPCO) demonstrated two new robots at the mock-up facility at Japan Atomic Energy Agency’s Naraha Center for Remote Control Technology Development (NARREC). As pictured by AP, one is a snake-like robot that should be able to reach very inaccessible areas, while four flying drones will be the first to enter the containment vessel of the Unit 1 reactor for inspection.

The flying drone to be used at Fukushima Daiichi's Unit 1 building. (Credit: Daisuke Kojima/Kyodo News via AP)
The flying drone to be used at Fukushima Daiichi’s Unit 1 building. (Credit: Daisuke Kojima/Kyodo News via AP)

These flying drones are 20 cm across, weigh 185 grams each, and were adapted from an existing model that’s used for boiler inspections. At the Naraha Town facility, operators were able to practice flying it into a copy of the Unit 1’s containment vessel via the piping. As the most heavily damaged unit at the Fukushima Daiichi plant, engineers are interested to learn the details of the fuel and debris that has fallen to the bottom of the vessel so that the clean-up and decontamination steps can be planned.

Most of the current work inside the Fukushimi Daiichi reactor buildings is performed by robots, with the TEPCO gallery providing an overview of the wide range of the types used so far.

One of the first was the PackBot, from US-based iRobot, with many more following for a variety of tasks, from inspection to debris clearing and even dry ice-based decontamination.

A Deep Dive Into Quadcopter Controls

In the old days, building a quadcopter or drone required a lot of hacking together of various components from the motors to the batteries and even the control software. Not so much anymore, with quadcopters of all sizes ready to go literally out-of-the-box. While this has resulted in a number of knock-on effects such as FAA regulations for drone pilots, it’s also let us disconnect a little bit from the more interesting control systems these unique aircraft have. A group at Cornell wanted to take a closer look into the control systems for drones and built this one-dimensional quadcopter to experiment with.

The drone is only capable of flying in one dimension to allow the project to more easily fit into the four-week schedule of the class, so it’s restricted to travel along a vertical rod (which also improves the safety of the lab).  The drone knows its current position using an on-board IMU and can be commanded to move to a different position, but it first has to calculate the movements it needs to make as well as making use of a PID control system to make its movements as smooth as possible. The movements are translated into commands to the individual propellers which get their power from a circuit designed from scratch for this build.

All of the components of the project were built specifically for this drone, including the drone platform itself which was 3D printed to hold the microcontroller, motors, and accommodate the rod that allows it to travel up and down. There were some challenges such as having to move the microcontroller off of the platform and boosting the current-handling capacity of the power supply to the motors. Controlling quadcopters, even in just one dimension, is a complex topic when building everything from the ground up, but this guide goes some more of the details of PID controllers and how they help quadcopters maintain their position.

Continue reading “A Deep Dive Into Quadcopter Controls”

Mega-CNC Router Carves Styrofoam Into A Full-Size Flying Delorean

When you own an enormous CNC router, you’ve got to find projects that justify it. So why not shoot for the sky — literally — and build the 1980s-est possible thing: a full-scale flying Delorean.

Attentive readers will no doubt remember [Brian Brocken] from his recent attempt to bring a welding robot out of retirement. That worked quite well, and equipped with a high-speed spindle, the giant ABB robot is now one of the biggest CNC routers we’ve ever seen. As for the flying Delorean, short of the well-known Mr. Fusion mod, [Brian] had to settle for less fictional approaches. The project is still in its early phase, but it appears that the flying car will basically be a huge quadcopter, with motors and propellers hidden under the chassis. That of course means eschewing the stainless steel of the OEM design for something lighter: expanded polystyrene foam (EPS).

The video below shows the fabrication of most of the body, which starts as large blocks of EPS and ends up as shaped panels and an unthinkable amount of dust. Individual pieces are glued together with what looks like plain old PVA adhesive. The standard Delorean “frunk” has been replaced by a louvered assembly that will act as an air intake; we presume the rear engine cover will get the same treatment. Interestingly, the weight of the finished model is almost exactly what Fusion 360 predicted based on the 3D model — a mere 13.9 kg.

[Brian] is currently thrust-testing motors and propellers and has some interesting details on that process in his write-up. There’s obviously a lot of work left on this project, and a lot more dust to be made, and we’ll be eagerly following along. Continue reading “Mega-CNC Router Carves Styrofoam Into A Full-Size Flying Delorean”