Temperature Sensor And Simple Oscillator Make A Value-Added HF Beacon

Sometimes the best projects are the simple, quick hits. Easily designed, fast to build, and bonus points for working right the first time. Such projects very often lead to bigger and better things, which appears to be where this low-power temperature beacon is heading.

In the world of ham radio, beacon stations are transmitters that generally operate unattended from a known location, usually at limited power (QRP). Intended for use by other hams to determine propagation conditions, most beacons just transmit the operator’s call sign, sometimes at varying power levels. Any ham that can receive the signal will know there’s a propagation path between the beacon and the receiver, which helps in making contacts. The beacon that [Dave Richards (AA7EE)] built is not a ham beacon, at least not yet; operating at 13.56 MHz, it takes advantage of FCC Part 15 regulations regarding low-power transmissions rather than the Part 97 rules for amateur radio. The circuit is very simple — a one-transistor Colpitts oscillator with no power amplifier, and thus very limited range. But as an added twist, the oscillator is keyed by an ATtiny13 hooked to an LM335 temperature sensor, sending out the Celsius and Fahrenheit temperature in Morse every 30 seconds or so. The circuit is executed in Manhattan style, which looks great and leaves plenty of room for expansion. [Dave] mentions adding a power amp and a low-pass filter to get rid of harmonics and make it legal in the ham bands.

Beacons are just one of the ways for hams to get on the air without talking. Another fun way to analyze propagation is WSPR, which is little like an IoT beacon.

Continue reading “Temperature Sensor And Simple Oscillator Make A Value-Added HF Beacon”

Crystal Oven Temperature Sensor Reads 0.01F Resolution

crystal-oven-temperature-sensor

[Scott Harden] continues his work on a high precision crystal oven. Being able to set a precise temperature depends on the ability to measure temperature with precision as well. That’s where this circuit comes in. It’s based around an LM335 linear temperature sensor. He’s designed support circuitry that can read temperature with hundredth-of-a-degree resolution.

Reading the sensor directly with an AVR microcontroller’s Analog-to-Digital Converter (ADC) will only yield about 1-2 degrees of range. He approached the problem by amplifying the output of the sensor to target a specific range. For the demonstration he adjusts the swing from 0-5V to correspond to a room temperature to body temperature range.

Of course he’s using analog circuitry to make this happen. But before our digital-only readers click away you should view his video explanation. This exhibits the base functionality of OpAmps. And we think [Scott] did a great job of presenting the concepts by providing a clear and readable schematic and explaining each part slowly and completely.

So what’s this crystal oven we mentioned? It’s a radio project that goes back several years.

Continue reading “Crystal Oven Temperature Sensor Reads 0.01F Resolution”