Nifty MIG Welder Built From Scrap

A MIG welder is a great tool to have. With machine fed wire and gas protecting the arc, it can make it easy to weld well without requiring a lot of manual skill from the operator. [PROFESSOR PARDAL BRASIL] decided to build his own MIG welder using scrap parts, and it’s an inspiring bit of work.

The build is along the lines of so many YouTube contraptions, using bits and pieces thrown together in oddball ways. A windscreen wiper motor is used to create a wire feeder, with jammed-up ball bearings acting as rollers. Speed control of the wiper motor appears to be via a variable resistor created by moving two plates closer together in a bath of salt water. This enables the wire feed rate to be easily controlled, albeit in a wet and messy fashion. The build includes a device for producing carbon dioxide for use as shielding gas, too. This is achieved by mixing a solution of water and bicarbonate soda with vinegar, and then pumping the resulting carbon dioxide into an inner tube for storage. The power supply for actually creating an arc comes courtesy of car batteries.

The resulting welder is janky as all heck, but it does successfully weld some steel plates together. Job done, as they say. Video after the break.  Continue reading “Nifty MIG Welder Built From Scrap”

kumiko from nails

Nail This Tricky Kumiko Pattern

[Pask Makes] has previously made Kumiko patterns in wood and was happy with the results, but he wondered if he could make something visually similar from metal instead of wood.

For that, he reached for nails as it is a cheap source of uniform small rods of metal. Kumiko is, funny enough, a technique known for joining small pieces of wood without nails. There are many different patterns that use the technique and most are inspired by nature. It is the pressure of the wood in the pattern itself that holds it together and requires dedicated planning and thousands of minute adjustments. Since [Pask] was using a MIG welder to hold the nails together, it isn’t technically Kumiko but rather a Kumiko pattern.

The first step was to take the coating off the nails, which is something a little acid does a wonderful job with. After dropping a little acid, his nails were prepped and he was ready to tack them together. He printed a template on a sheet of paper and used a straight edge and a palm router with a groove bit to cut little channels for each of the nails to sit in. The nails were trimmed to the correct width with the help of a small jig. After he had tacked the nails together, he came back and filled in the centers.

It’s a straightforward little project that creates a beautiful pattern and it’s a good reminder that simple materials can make complex things. If you prefer the wood look, this Kumiko guitar might be more to your taste. Video after the break.

Continue reading “Nail This Tricky Kumiko Pattern”

Turning A MIG Welder Into A Metal 3D Printer

Metal 3D printers are, by and large, many times more expensive than their FDM and resin-based brethren. It’s a shame, because there’s plenty of projects that would benefit from being able to produce more heat-resistant metal parts with additive fabrication methods. [Integza]’s rocketry projects are one such example, so he decided to explore turning a MIG welder into a 3D printer for his own nefarious purposes. (Video, embedded below.)

The build is as simple as you could possibly imagine. A plastic adapter was printed to affix a MIG welding nozzle to an existing Elegoo Neptune 2 3D printer. Unfortunately, early attempts failed quickly as the heat from the welding nozzle melted the adapter. However, with a new design that held the nozzle handle far from the hot end, the ersatz metal 3D printer was able to run for much longer.

Useful parts weren’t on the cards, however, with [Integza] facing repeated issues with the steel bed warping from the heat of the welding process. While a thicker steel base plate would help, it’s likely that warping could still happen with enough heat input so more engineering may be needed. It’s not a new concept by any means, and results are typically rough, but it’s one we’d like to see developed further regardless.

Continue reading “Turning A MIG Welder Into A Metal 3D Printer”

Upgrading An Old MIG Welder Wire Feeder With Arduino

Older industrial equipment is often a great option if you’re on a budget, and you might even be able to add some premium features yourself. [Brett] from [Theoretically Practical] has done with his old MIG welder, adding premium control features with the help of an Arduino.

The main features [Brett] were after is pre-flow, post-flow, and a spot welding timer. Pre-flow starts the flow of shielding gas a moment before energizing the filler wire, while post-flow keeps the gas going after the weld is complete. This reduces the chances of oxygen contaminating the welds. A spot welding timer automatically limits welding time, enabling consistent and repeatable spot welds.

The Miller S-22A wire feeder can have these features, but it requires an expensive and difficult to find control unit. All it does is time the activation of the relays that control the gas flow, power, and wire feeder, so [Brett] decided to use an Arduino instead. The welders control circuit runs at 24V, so an optoisolator receives the trigger signal, and relays are used for outputs. Potentiometers were added to the original control panel, and all the wiring was neatly fitted behind it. The upgrade worked perfectly and allowed [Brett] to increase the quality of his welds. See the video after the break for the full details.

Inverter welders can be picked up for ridiculously cheap prices, if you’re willing to live with the trade-offs. We’ve also seen some other DIY welder upgrades, on small and large machines.