How To Make Bisected Pine Cones Look Great, Step-by-Step

[Black Beard Projects] sealed some pine cones in colored resin, then cut them in half and polished them up. The results look great, but what’s really good about this project is that it clearly demonstrates the necessary steps and techniques from beginning to end. He even employs some homemade equipment, to boot.

Briefly, the process is to first bake the pine cones to remove any moisture. Then they get coated in a heat-activated resin for stabilizing, which is a process that infuses and pre-seals the pine cones for better casting results. The prepped pine cones go into molds, clear resin is mixed with coloring and poured in. The resin cures inside a pressure chamber, which helps ensure that it gets into every nook and cranny while also causing any small air bubbles introduced during mixing and pouring to shrink so small that they can’t really be seen. After that is cutting, then sanding and polishing. It’s an excellent overview of the entire process.

The video (which is embedded below) also has an outstanding depth of information in the details section. Not only is there an overview of the process and links to related information, but there’s a complete time-coded index to every action taken in the entire video. Now that’s some attention to detail.

Continue reading “How To Make Bisected Pine Cones Look Great, Step-by-Step”

The Blackest Black, Now in Handy Pocket Size

If you thought “carbon nanotubes” were just some near-future unobtainium used in space elevators, don’t worry, you certainly aren’t alone. In reality, while the technology still has a way to go, carbon nanotube production has already exceeded several thousand tons per year and there are products you can buy today that are using this decidedly futuristic wonder material. Now there’s even one you can put in your pocket.

Created by [Simon], a designer in the UK, this small carbon nanotube array is described as “A simulated black hole” because the surface absorbs 99.9% of the visible light that hits it. Protected by a clear acrylic case, the sample of the material makes a circle that’s so black it gives the impression you’re looking into deep space. Unfortunately, no time-dilating gravitational forces are included at any of level of support in the ongoing Kickstarter campaign; but considering it was 100% funded in just a few hours, it seems like most people are OK with the trade-off.

[Simon] is well aware of the ongoing war between different methods of creating the “Blackest Black”, and he thinks he’s put his money (and by extension, his backer’s) money on the winner. Singularity is using a similar technology to the exclusively-licensed Vantablack, rather than a super-dark paint like “Black 3.0”. In fact he’s so confident that Singularity will appear darker than Black 3.0 that he mentions a head-to-head comparison is currently in the works.

If there’s a downside to the carbon nanotube array used in Singularity, it’s that you can’t actually touch it. [Simon] warns that while the acrylic case is only held together with magnets and can be opened for more careful inspection, actually touching the surface is absolutely not recommended. He says that even dust getting on the material is going to adversely effect its ability to absorb light, so you should really keep it buttoned up as much as possible.

While the Singularity looks like an interesting way to experience near perfect blackness, the concept itself is far from a novelty. A material that can absorb essentially all the light that hits it has important scientific, military, and of course artistic applications; so figuring out how to pull it off has become a pretty big deal.

Simple Automata Extravaganza

[Federico Tobon] from [Wolfcat Workshop] spent Makevember in 2017 building a series of fascinating automata using the most basic of craft supplies and simple tools in his workshop. Using a combination of rigid materials such as wooden cubes, popsicle sticks, and paper clips and pliable ones like paper and rubber bands, his creations are way more delightful to play with compared to fidget spinners.

There are no assembly guides, instructions or building plans, but for a hacker, one look at these designs ought to be enough to glean how to build one, with some trial and error to get it right. And that is exactly what [Tobon] found to his delight. After sharing animated GIFs of his creations on social media, numerous other hackers built and shared their own versions of his designs as well as building some new ones.

He posts several other useful resources, some of which were the inspiration that got him started making these automata. All of them are pretty interesting, so do take a look at them too. There is a lot that young kids can learn from building these little machines, given some guidance and help from the elders. But the way we see it, it’s likely the old folks will enjoy them more.

The video after the break compiles all of the little machines for six minutes of viewing pleasure.

Continue reading “Simple Automata Extravaganza”

Create an Aurora Of Your Own

Throughout our day-to-day experiences, we come across or make use of many scientific principles which we might not be aware of, even if we immediately recognize them when they’re described. One such curiosity is that of caustics, which refers not only to corrosive substances, but can also refer to a behavior of light that can be observed when it passes through transparent objects. Holding up a glass to a light source will produce the effect, for example, and while this is certainly interesting, there are also ways of manipulating these patterns using lasers, which makes an aurora-like effect.

The first part of this project is finding a light source. LEDs proved to be too broad for good resolution, so [Neuromodulator] pulled the lasers out of some DVD drives for point sources. From there, the surface of the water he was using to generate the caustic patterns needed to be agitated, as the patterns don’t form when passing through a smooth surface. For this he used a small speaker and driver circuit which allows precise control of the ripples on the water.

The final part of the project was fixing the lasers to a special lens scavenged from a projector, and hooking everything up to the driver circuit for the lasers. From there, the caustic patterns can be produced and controlled, although [Neuromodulator] notes that the effects that this device has on film are quite different from the way the human eye and brain perceive them in real life. If you’re fascinated by the effect, even through the lens of the camera, there are other light-based art installations that might catch your eye as well.

Continue reading “Create an Aurora Of Your Own”

This Creepy Skull Shows Time With Its Eyes

Sometimes you have an idea, and despite it not being the “right” time of year you put a creepy skull whose eyes tell the time and whose jaw clacks on the hour into a nice wooden box for your wife as a Christmas present. At least, if you’re reddit user [flyingalbatross1], you do!

The eyes are rotated using 360 degree servos, which makes rotating the eyes based on the time pretty easy. The servos are connected to rods that are epoxied to the spheres used as eyes. Some water slide iris decals are put on the eyes offset from center in order to point in the direction of the minutes/hours. An arduino with a real time clock module keeps track of the time and powers the servos.

Check out the video after the break:

Continue reading “This Creepy Skull Shows Time With Its Eyes”

This Is A Kickstarter For None More Black

Vantablack is the darkest pigment ever created, capable of absorbing 99.96% of visible light. If you cover something in Vantablack, it turns into a black hole. No detail is presented, and physical objects become silhouettes. Objects covered in Vantablack are outside the human experience. The mammalian mind cannot comprehend a Vantablack object.

Vantablack is cool, but it’s also expensive. It’s also exclusively licensed by [Anish Kapoor]’s studio for artistic use. Understandably, artists have rebelled, and they’re making their own Vantablack-like pigments. Now, the World’s Blackest Black is on Kickstarter. You can get a 150 ml bottle of Black 3.0, something that’s almost black as Vantablack, for £10.

Is this a photoshop? Who knows.

The pigment for Black 3.0 is called Black Magick, and yes, there was a version 2.0 The problem with the earlier version is that although the pigment was blacker than almost anything else, paint isn’t just pigment. You need binders. The new formulation uses a new acrylic polymer to hold the pigment, and ‘nano-mattifiers’ to make the paint none more matte.

What can you do with the blackest black paint you’ve ever seen? Well, taking pictures of an object covered in the blackest black is a tiny bit dumb. This is something that must be experienced in person. You could paint a car with it, which is something I really want to see. You could follow [Anish Kapoor] around in the shadows. Use it as a calibration target. Who knows what we’ll do with the almost-Vantablack when everyone has it.

Adventures In Photopolymers With Ben Krasnow

There is a technology that will allow you to add inks, resins, and paints to any flat surface. Screen printing has been around since forever, and although most of the tutorials and guides out there will tell you how to screen print onto t-shirts, [Ben Krasnow] had the idea of putting patterns of paint on acrylic, metal, or even ITO glass for electroluminescent displays. With screen printing, the devil is in the details, but lucky enough for all of us, [Ben] figured everything out and is sharing his knowledge with us.

The ten thousand foot view of screen printing is simple enough — put some ink on a screen that has some photoemulsion, and squeegee it through onto a t-shirt. While this isn’t wrong, there’s a lot of technique, and things will go wrong if this is your first time doing it. Screens are easy, and the best way to get those is by buying a pre-stretched frame. The photoemulsion is a bit different. The old way of applying a photoemulsion is by squeegeeing it on with a bizarre tool. It’s almost impossible to get a thin consistent layer with this technique, so [Ben] recommends just buying some photoemulsion film.

Once the photoemulsion is on the screen and dry, you need to put an image on this. The photoemulsion cures hard with UV, so the traditional technique is using transparency (actually, the real old-school way is using a camera obscura…). Transparency sheets for laser printers work, but 30-lb vellum is actually more transparent to UV light than clear acetate sheets. This is then applied print side down to the dry screen, and believe me when I say this is the most important part. You will not get a good screen print if there is not direct contact between your photomask and your photoemulsion. This is so important, it may be worth considering some experiments in vinyl cutting to create the photomask.

With the screen developed, it’s simply a matter of globbing on some ink and pressing it onto a piece of acrylic. [Ben] used regular oil paints, an unmixed artists’ oil paint, and the professional solution, epoxy-based screenprinting paint. By far, the epoxy paint gave the best finish, but it’s a stinky mess that is nearly impossible to clean.

With a somewhat successful screenprinting setup, what will [Ben] be able to do? Well, he’s been working on electroluminescent displays, and the first EL displays were screenprinted anyway. More than that, you could use screen printing to create a resist for copper etching for creating your own PCBs. There’s a lot you can do when you can put epoxy down in a thin layer, like make a blockchain of Tide pods, and this is the best tutorial we’ve ever seen on using photoemulsions.

Continue reading “Adventures In Photopolymers With Ben Krasnow”