Voltage Divider? Filter? It’s Both!

When we do textbook analysis, we tend to ignore the real-world concerns for the sake of learning. So, a typical theoretical voltage divider is simply two resistors. But if you examine a low-pass RC filter, you’ll see a single resistor and a capacitor. What if you combine them? That’s what [Old Hack EE] did in a recent video, and you can check it out below.

It helps if you are familiar with Thevenin equivalents and, of course, Ohm’s Law. There’s also a bit of algebra, but nothing too complicated. The example design has a lossy filter at 100 Hz.

Of course, RC filters are easy to understand if you think of them as voltage dividers with a frequency-variable resistance, which is what the math is basically saying. The load impedance, in this case, is R2 in parallel with Xc at a given frequency.

He mentions that you might find a circuit like this in a power supply. However, it is also common to see this circuit wherever a divider drives a load with capacitance or even parasitic capacitance in cables or circuit boards.

We’ve discussed Thevenin equivalence modeling before. If you want really good filters, you are probably going to need op-amps.

Continue reading “Voltage Divider? Filter? It’s Both!”

Circuit VR: Measuring With LTSpice

Usually, with Circuit VR we look at some circuit in detail with simulation — usually LTSpice. This one will be a little meta because I wanted to look at a capability in LTSpice which ironically is very useful, but not often used. Along the way, though, we’ll look at why you get maximum power transfer when your source impedance matches your load impedance. This is something you probably already know about, but it is interesting to look at in simulation if you know how to coax LTSpice — no pun intended — into showing you a meaningful graph.

The circuit is super simple. An AC source and a 50-ohm resistor stand-in for a 40-meter ham transmitter. With 100 volts into a 50-ohm load. So far, so good.

Continue reading “Circuit VR: Measuring With LTSpice”