Blacksmithing For The Uninitiated: Curves And Rings

You know the funny looking side of the anvil? That’s where the best curves come from. It’s called the anvil horn and is the blacksmith’s friend when bending steel and shaping it into curves.

The principle of bending a piece of steel stock is very easy to understand. Heat it up to temperature, and hammer it over a curved profile to the intended shape. A gentler touch is required than when you are shaping metal. That’s because the intent is to bend the metal rather than deform. Let’s take a look!

Continue reading “Blacksmithing For The Uninitiated: Curves And Rings”

Linux Fu: Named Pipe Dreams

If you use just about any modern command line, you probably understand the idea of pipes. Pipes are the ability to connect the output from one program to the input of another. For example, you can more easily review contents of a large directory on a Linux machine by connecting two simple commands using a pipe:

ls | less

This command runs ls and sends its output to the input of the less program. In Linux, both commands run at once and output from ls immediately appears as the input of less. From the user’s point of view it’s a single operation. In contrast, under regular old MSDOS, two steps would be necessary to run these commands:

ls > SOME_TEMP_FILE
less < SOME_TEMP_FILE

The big difference is that ls will run to completion, saving its output a file. Then the less command runs and reads the file. The result is the same, but the timing isn’t.

You may be wondering why I’m explaining such a simple concept. There’s another type of pipe that isn’t as often used: a named pipe. The normal pipes are attached to a pair of commands. However, a named pipe has a life of its own. Any number of processes can write to it and read from it. Learn the ways of named pipes will certainly up your Linux-Fu, so let’s jump in!

Continue reading “Linux Fu: Named Pipe Dreams”

Reverse Engineering Cyclic Redundancy Codes

Cyclic redundancy codes (CRC) are a type of checksum commonly used to detect errors in data transmission. For instance, every Ethernet packet that brought you the web page you’re reading now carried with it a frame check sequence that was calculated using a CRC algorithm. Any corrupted packets that failed the check were discarded, and the missing data was detected and re-sent by higher-level protocols. While Ethernet uses a particularly common CRC, there are many, many different possibilities. When you’re reverse-engineering a protocol that contains a CRC, although it’s not intended as a security mechanism, it can throw a wrench in your plans. Luckily, if you know the right tool, you can figure it out from just a few sample messages.

A case in point was discussed recently on the hackaday.io Hack Chat, where [Thomas Flayols] came for help reverse engineering the protocol for some RFID tags used for race timing. Let’s have a look at the CRC, how it is commonly used, and how you can reverse-engineer a protocol that includes one, using [Thomas’] application as an example.

Continue reading “Reverse Engineering Cyclic Redundancy Codes”

Making A Mediaeval Nail

If for some reason I were to acknowledge the inevitability of encroaching middle age and abandon the hardware hacker community for the more sedate world of historical recreation, I know exactly which band of enthusiasts I’d join and what period I would specialise in. Not for me the lure of a stately home in Regency England or the Royal court of Tudor London despite the really cool outfits, instead I would head directly for the 14th century and the reign of King Edward the Third, to play the part of a blacksmith’s wife making nails. It seems apposite to pick the year 1337, doesn’t it.

The woman blacksmith forging a nail depicted in the Holkham Bible. British Library (Public domain)
The woman blacksmith forging a nail depicted in the Holkham Bible. British Library (Public domain)

Why am I so sure? To answer that I must take you to the British Library, and open the pages of the Holkham Bible. This is an illustrated book of Biblical stories from the years around 1330, and it is notable for the extent and quality of its illuminations. All of mediaeval life is there, sharply observed in beautiful colour, for among the Biblical scenes there are contemporary images of the people who would have inhabited the world of whichever monks created it. One of its more famous pages is the one that caught my eye, because it depicts a woman wearing a blacksmith’s apron over her dress while she operates a forge. She’s a blacksmith’s wife, and she’s forging a mediaeval carpenter’s nail. The historians tell us that this was an activity seen as women’s work because the nails used in the Crucifixion were reputed to have been forged by a woman, and for that reason she is depicted as something of an ugly crone. Thanks, unknown mediaeval monk, you really don’t want to know how this lady blacksmith would draw you!
Continue reading “Making A Mediaeval Nail”

Blacksmithing For The Uninitiated: Your First Time At The Anvil

For the past few months we’ve been running this series of Blacksmithing For The Uninitiated posts, exploring the art of forge work for a novice. It’s based upon my experience growing up around a working blacksmith’s business and becoming an enthusiastic if somewhat inexpert smith, and so far we’ve spent our time looking at the equipment you might expect to need were you embarking on your own blacksmith work. Having assembled by now a basic forge of our own it’s now time to fire it up and take to the anvil for our first bit of smithing.

Lighting a forge is easy enough. Some people do it with a gas torch, but I break a piece of firewood into sticks using a hammer with the fuller set in the hardy hole on the anvil as an impromptu splitter. Making a small fire by lighting some paper under my pile of sticks placed on the hearth next to the tuyere I start the blower and then pile coke on top of the resulting conflagration. After about ten minutes I will have a satisfying roar and a heap of glowing coals, and as they burn there will be some slag collecting in the bottom of the fire that I will eventually need to rake out. Continue reading “Blacksmithing For The Uninitiated: Your First Time At The Anvil”

Hackaday Superconference: Pushing The Boundaries Of PCB Artwork With Brian Benchoff

The artistic elite exists in a stratum above we hoi polloi, a world of achingly trendy galleries, well-heeled collectors, and art critics who act as gatekeepers to what is considered the pinnacle du jour of culture. Artistic movements that evolve outside this bubble may be derided or ignored as naive and unsophisticated, even in complete denial of their raw creative edge. When they are discovered by the establishment a few of their artists are selected and anointed, while inevitably the crucible in which they were formed is forgotten. On the streets of Bristol the incredible work of far more graffiti artists can be seen than just that of Banksy.

Our community has an art form all of its own, in the guise of PCB artwork and the #BadgeLife community. One day you will see electronic badges from darlings of the art world behind glass in those trendy galleries, but for now they live in glorious abundance in the wild. Here at Hackaday we are lucky enough to have in Brian Benchoff a colleague who is pushing the boundaries of PCB art, and at the Hackaday Superconference he took us through one of his more recent pieces of work.

Brian's pad printer.
Brian’s pad printer.

The colour palette of a typical printed circuit board is limited by the combination of fibreglass, copper, soldermask, plating, and silkscreen its designer selects. Thus while the variety of soldermask colours and plating materials can make for an eye-catching work, they have remained a colour-tinted near monochrome. The Holy Grail of the PCB artist has been to step into the world of full colour, and Brian has been pursuing that goal by exploring pad printing to produce extra colours beyond the sodermask..

It’s a subject he’s written about here in the past, and he introduces it in the talk with a look at existing badge artwork and a mention of an expensive commercial inkjet process before considering the type of printing you see daily on the sides of promotional pens. Those company titles are deposited on pens using pad printing, an offset process in which ink is first deposited upon a photo-etched metal plate before being picked up on a silicone rubber pad for transfer to the object to be printed. It’s not the panacea for all coloured-PCB tasks, but for adding relatively small blocks of pigment to an otherwise monochromatic board it can be very successful.

The eye-catching Kiss -themed Tindie badges.
The eye-catching Kiss -themed Tindie badges.

Brian’s examples are a panelised set of Tindie badges as a homage to the rock band Kiss, and his Tide pod addon containing a serial number in an EEPROM that was part of a Blockchain-inspired game. The Kiss Tindie badges use black soldermask with extensive white silkscreen and a modest area of red pad printing for the stage makeup, while the Tide addon makes clever use of the same swoosh printed in alternate colours at 180 degrees to each other.

In both cases there is some labour involved in creating the prints, and as his detailed write-up of printing the Tide pods reminds us, the process of creating the printing plate is not exactly an easy one. But it remains the best way yet to add extra colours to a board without paying a small fortune for the inkjet process, and if you’d like to put your own designs at the bleeding edge of PCB art you might wish to read his writeups and watch the video below the break.

This is just one example of the kind of manufacturing techniques, and electronic design principles on display at the Hackaday Superconference. There’s another Supercon just around the corner, so grab your ticket and send in your own talk proposal right away!

Continue reading “Hackaday Superconference: Pushing The Boundaries Of PCB Artwork With Brian Benchoff”

From Dirt To Space, Backyard Iron Smelting Hackerspace Style

When I went to a hacker camp in the Netherlands in February I was expecting to spend a few days in a comfortable venue with a bunch of friends, drink some beer, see a chiptune gig, and say “Ooh!” a lot at the exciting projects people brought along. I did all of those things, but I also opened the door to something unexpected. The folks from RevSpace in the Hague brought along their portable forge, and before long I found myself working a piece of hot rebar while wearing comically unsuitable clothing. One thing led to another, and I received an invite to come along and see another metalworking project of theirs: to go form ore to ornamental technology all in one weekend.

From Dirt To Space is a collaboration between Dutch hackerspaces with a simple aim: to take iron ore and process it into a component that will be launched into space. The full project is to be attempted at the German CCCamp hacker camp in August, but to test the equipment and techniques a trial run was required. Thus I found myself in a Le Shuttle car transporter train in the Channel Tunnel, headed for the Hack42 hackerspace in Arnhem where all the parties involved would convene.

Continue reading “From Dirt To Space, Backyard Iron Smelting Hackerspace Style”