I need someone to explain this to me.

Poking machine

We may be showing our age here, but we have no idea what a ‘poke’ on Facebook actually means. Whether it’s the passive-aggressive manifestations of online stalkers or an extension of  the ‘like’ button, all we know is [Jasper] and [Bartholomäus] built a machine that translates virtual pokes into our analog world.

The “Poking Machine” as [Jasper] and [Bart] call it, syncs to your phone over a Bluetooth connection. The build is incredibly simple: just an ATtiny running Arduino for ATtiny, a Bluetooth controller (possibly this one from Sparkfun), and a servo. When the Facebook app on [Jasper] and [Bart]‘s phone receives notification of a ‘poke’, the servo is powered and gently taps the wearer on the arm.

One thing we really like about this project is the case made of several layers of laser-cut acrylic bolted together. This case offers a very clean look even if it is a bit ungainly. We suppose the guys could have used a simple vibration/pager motor for this build, but it wouldn’t exactly be a poking machine at that point. Check out the build video after the break.

[Read more...]

Nanoscale 3D printing

This 3D-printed model of the Tower Bridge is only 200 micrometers long. To put that into perspective, the distance between the towers is the width of a human hair. This model is the product of research at the additive manufacturing department of the Vienna University of Technology

The models were fabricated much like normal stereolithography – a laser shines onto a vat of light-sensitive resin. The resin hardens when exposed to light, and the model is built up layer by layer. These nanoscale models were made using a process called “two-photon lithography,” something we’re not going to pretend we understand completely but here’s a nice paper that provides a good overview. Needless to say, the precision these prints exhibit are nearly ludicrous. The researchers claim a precision of ±1µm, a respectable amount of precision for very high-tech machining applications.

The researches posted a video of the fabrication of a nanoscale F1 race car filmed in real-time. Check that out after the break.

[Read more...]

A Mannequin Head + Arduino + Webcam = Lots of Creepy Fun!

styrofoam head robot

This mannequin head was purchased years ago on sale for less than $3. As with many things one sees while shopping, it didn’t have a purpose at the time, but seemed like it would be useful later. Add in an Arduino, some servos, and electronics parts that were acquire in a similar manner, and you have all the ingredients needed for a cool hack.

The build is well documented in the video after the break, and we especially like at 2:24 when who we suppose is the mom says “Look at this mess!” Apparently the next iteration will be a robot to clean everything up!

This iteration is quite impressive though, as it uses a webcam to track objects using a servomotor and lists the code used. For a view of it tracking stuff along with a view of the PC, fast forward to around 8:45. In addition to tracking the parts using the servo, the non-webcam eye changes color from green to yellow depending on if it’s tracking or not. It also featured a blinking necklace, which is also a plus in our eyes.

For more random head-like creepiness, be sure to check out [Boxie the Creepster]!

USB controlled SPÖKA night light

usb-controlled-spoka-nightlight

[wejp] picked up an IKEA SPÖKA night light, but he wasn’t entirely impressed with its functionality. Pressing the top of the ghost’s head causes it to cycle through a few colors, and pressing it a second time locks it into displaying the current color until its tapped again. Inspired by this SPÖKA hack which used a different version of the night light, he tore his down to see what he could do with it.

Upon stripping off the outer cover, he found that the internals were considerably different than those found in its glowing brethren, though they were perfect for what [wejp] had in mind. He removed the rechargeable battery pack as well as the controller board, which sits on a PCB separate from the LEDs. He replaced the stock micro with an ATtiny25, which he uses to give himself a bit more control over the light display.

He couldn’t quite cram all the functionality he desired into the ATtiny, but he planned on powering the light using his computer anyhow, so he installed a small USB port in the back. When connected to his PC, the SPÖKA can be controlled more precisely than when it operates alone.

Unfortunately there’s no video available of the SPÖKA light in action, but there are plenty of images available on his site.