Hackaday Podcast Episode 262: Wheelchair Hacking, Big Little Science At Home, Arya Talks PCBs

Join Hackaday Editors Elliot Williams and Tom Nardi as they go over their favorite hacks and stories from the past week.  This episode starts off with an update on Hackaday Europe 2024, which is now less than a month away, and from there dives into wheelchairs with subscription plans, using classic woodworking techniques to improve your 3D printer’s slicer, and a compendium of building systems. You’ll hear about tools for finding patterns in hex dumps, a lusciously documented gadget for sniffing utility meters, a rare connector that works with both HDMI and DisplayPort, and a low-stress shortwave radio kit with an eye-watering price tag. Finally, they’ll take a close look at a pair of articles that promise to up your KiCAD game.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download in DRM-free MP3.

Continue reading “Hackaday Podcast Episode 262: Wheelchair Hacking, Big Little Science At Home, Arya Talks PCBs”

Celebrating Pi Day With A Ghostly Calculator

For the last few years, [Cristiano Monteiro] has marked March 14th by building a device to calculate Pi. This year, he’s combined an RP2040 development board and a beam-splitting prism to create an otherworldly numerical display inspired by the classic Pepper’s Ghost illusion.

The build is straightforward thanks to the Cookie board from Melopero Electronics, which pairs the RP2040 with a 5×5 matrix of addressable RGB LEDs. Since [Cristiano] only needed 4×5 LED “pixels” to display the digits 0 through 9, this left him with an unused vertical column on the right side of the array. Looking to add a visually interesting progress indicator for when the RP2040 is really wracking its silicon brain for the next digit of Pi, he used it to show a red Larson scanner in honor of Battlestar Galactica.

With the MicroPython code written to calculate Pi and display each digit on the array, all it took to complete the illusion was the addition of a glass prism, held directly over the LED array thanks to a 3D-printed mounting plate. When the observer looks through the prism, they’ll see the reflection of the display seemingly floating in mid-air, superimposed over whatever’s behind the glass. It’s a bit like how the Heads Up Display (HUD) works on a fighter jet (or sufficiently fancy car).

Compared to his 2023 entry, which used common seven-segment LED displays to show off its fresh-baked digits of Pi, we think this new build definitely pulls ahead in terms of visual flair. However, if we had to pick just one of [Cristiano]’s devices to grace our desk, it would still have to be his portable GPS time server.

Continue reading “Celebrating Pi Day With A Ghostly Calculator”

On An Aging Space Station, Air Leaks Become Routine

Anyone who’s ever owned an older car will know the feeling: the nagging worry at the back of your mind that today might be the day that something important actually stops working. Oh, it’s not the little problems that bother you: the rips in the seats, the buzz out of the rear speakers, and that slow oil leak that might have annoyed you at first, but eventually just blend into the background. So long as the car starts and can get you from point A to B, you can accept the sub-optimal performance that inevitably comes with age. Someday the day will come when you can no longer ignore the mounting issues and you’ll have to get a new vehicle, but today isn’t that day.

Looking at developments over the last few years one could argue that the International Space Station, while quite a bit more advanced and costly than the old beater parked in your driveway, is entering a similar phase of its lifecycle. The first modules of the sprawling orbital complex were launched all the way back in 1998, and had a design lifetime of just 15 years. But with no major failures and the Station’s overall condition remaining stable, both NASA and Russia’s Roscosmos space agency have agreed to several mission extensions. The current agreement will see crews living and working aboard the Station until 2030, but as recently as January, NASA and Roscosmos officials were quoted as saying a further extension isn’t out of the question.

Still, there’s no debating that the ISS isn’t in the same shape it was when construction was formally completed in 2011. A perfect case in point: the fact that the rate of air leaking out of the Russian side of the complex has recently doubled is being treated as little more than a minor annoyance, as mission planners know what the problem is and how to minimize the impact is has on Station operations.

Continue reading “On An Aging Space Station, Air Leaks Become Routine”

Printable Keyboard Dock Puts Steam Deck To Work

Whether or not you’re into playing video games, you have to admit, that the Steam Deck is a pretty interesting piece of hardware. We’ve seen hackers jump through all sorts of uncomfortable hoops to get Linux running on their mobile devices in the past. The fact that you can pick up a fairly powerful x86 handheld computer right now for a reasonable amount of money is certainly exciting. The Linux steam deck gets even more enticing when you consider the software support it enjoys thanks to its large and vibrant user community. No wonder we’ve started to see them dotting the workbenches during Hackaday Supercon.

If there’s a downside, it’s that the Steam Deck was very clearly designed to be a handheld gaming system, not a portable computer. Sure you can plug in an external monitor and keyboard, but things can quickly become ungainly. This is why a printable dock from [a8ksh4] caught our eye.

It’s officially designed to let you mate the Steam Deck with the Corne keyboard, a split ergonomic design that’s graced these pages a few times in the past. [A8ksh4] has included links for all the hardware you’ll need outside the printed parts, from the hinges and keyboard PCBs, all the way to the keycaps and stainless steel screws. If you’re looking for a turnkey experience, this is it.

Continue reading “Printable Keyboard Dock Puts Steam Deck To Work”

Hackaday Podcast Episode 258: So Much Unix, Flipper Flip-out, And The Bus Pirate 5

Hackaday Editors Elliot Williams and Tom Nardi discuss all the week’s best and most interesting hacks and stories, starting with Canada’s misguided ban on the Flipper Zero for being too spooky. From there they’ll look at the state-of-the-art in the sub-$100 3D printer category, Apple’s latest “Right to Repair” loophole, running UNIX on the NES (and how it’s different from Japan’s Famicom), and the latency of various wireless protocols.

After singing the praises of the new Bus Pirate 5, discussion moves on to embedded Linux on spacecraft, artfully lifting IC pins, and the saga of the blue LED. Finally you’ll hear the how and why behind electrical steel, and marvel at a Mach 10 missile that (luckily) never needed to be used.

Grab a copy for yourself if you want to listen offline.

Continue reading “Hackaday Podcast Episode 258: So Much Unix, Flipper Flip-out, And The Bus Pirate 5”

Hands On: Bus Pirate 5

If you’ve been involved with electronics and hardware hacking for awhile, there’s an excellent chance you’ve heard of the Bus Pirate. First introduced on the pages of Hackaday back in 2008 by creator Ian Lesnet, the open hardware multi-tool was designed not only as away to easily tap into a wide array of communication protocols, but to provide various functions that would be useful during hardware development or reverse engineering. The Bus Pirate could talk to your I2C and SPI devices, while also being able to measure frequencies, check voltages, program chips, and even function as a logic analyzer or oscilloscope.

Bus Pirate 3, circa 2012

The Bus Pirate provided an incredible number of tools at a hobbyist-friendly price, and it wasn’t long before the device became so popular that it achieved a milestone which only a few hardware hacking gadgets can boast: its sales started to get undercut by cheap overseas clones. Of course, as an open hardware device, this wasn’t really a problem. If other companies wanted to crank out cheap Bus Pirates, that’s fine. It freed Ian up to research a next-generation version of the device.

But it turns out that was easier said than done. It’s around this point that the Bus Pirate enters what might be considered its Duke Nukem Forever phase. It took 15 years to release the sequel to 1996’s Duke Nukem 3D because the state-of-the-art in video games kept changing, and the developers didn’t want to be behind the curve. Similarly, Ian and his team spent years developing and redeveloping versions of the Bus Pirate that utilized different hardware platforms, such as the STM32 and ICE40 FPGA. But each time, there would be problems sourcing components, or something newer and more interesting would be released.

But then in 2021 the Raspberry Pi Pico hit the scene, and soon after, the bare RP2040 chip. Not only were the vast I/O capabilities of the new microcontroller a perfect fit for the Bus Pirate, but the chip was cheap and widely available. Finally, after years of false starts, the Bus Pirate 5 was born.

I was able to grab one of the first all-new Bus Pirates off the production line in January, and have been spending the last week or so playing around with it. While there’s definitely room for improvement on the software side of things, the hardware is extremely promising, and I’m very excited to be see how this new chapter in the Bus Pirate story plays out.

Continue reading “Hands On: Bus Pirate 5”

20,000 Volt Plasma Knife Slices, Dices, And Sparks

For the most part, here at Hackaday we’re more interested in how something was made than the backstory on why an individual actually put it together. Frankly, it’s not really our business. But we’ve been around long enough to know that practicality isn’t always the driving force. Some folks build things because they want to challenge themselves, others because there’s nothing commercially available that quite meets their needs. Of course, there’s another camp that just builds things to look cool.

In the case of the plasma-infused blade [Jay Bowles] recently put together for Plasma Channel, we imagine it was a bit from each column. The basic inspiration was to create something in the style of the “Energy Sword” from Halo, but the resulting electrified blade is no mere prop. Inside the 3D printed enclosure, it packs not only the electronics necessary to produce 20,000 volts from the built-in battery pack, but a fan to help push the resulting plasma down the length of the two-piece steel blade.

As you might expect, it took a few attempts to get there. In the video after the break, [Jay] shows off the design process and some earlier incarnations of the plasma knife that didn’t quite live up to expectations. While there were always some impressive sparks, the spacing of the blades and the output power of the miniature high-voltage generator both needed fine tuning before it resulted in the band of plasma he was aiming for.

Is there a practical use for such a thing? Well the spark between the blades can apparently be used to light stuff on fire, and of course, you can cut things with it. But realistically…no, not really. It just looks cool, which is fine by us.

Should you prefer your high-voltage experimentation to have a more clearly defined goal, you might be interested in the ongoing work [Jay] has been doing with ionic propulsion and magnetohydrodynamic drives (MHDs).

Continue reading “20,000 Volt Plasma Knife Slices, Dices, And Sparks”