Climbing robot glues it’s own feet to the wall

The problem of gripping all surfaces has always plagued the field of climbing robotics. But if you don’t care about damaging the wall, why not just let the robot glue its feet to the surface. That’s exactly how this robot does it, using a couple of climbing feet in conjunction with a hot melt glue gun wielding arm. It seems to be a predecessor of the hot glue 3D printing robot which¬†we saw last week.

Check out the video to get a full overview of the climbing process, but here’s the gist of it. The legs and arm are able to pivot around the central axis of the robot, parallel to the climbing surface. Once one leg is glued in place the robot swivels around it so that the body is directly above that leg. From there it reaches up with the arm to deposit some glue on the wall, then moves it out of the way so the other foot can be pressed against the hot adhesive. When the newly attached foot has cooled sufficiently, the lower foot is reheated to free it from the wall. At this point the whole process repeats.

We’re still fond of vacuum-based climbers like this parachute-equipped robot. But the design of the hot-glue arm on this guy is something that might make it into one of our own projects someday.

Continue reading “Climbing robot glues it’s own feet to the wall”

Hot glue appendages may be predecessor to the flow metal of the T-1000

The T-1000 was the shape-shifting robot from T2 (the second Terminator movie). It was so amazing because it could assume the form and texture of anything; humans, piercing weapons, inanimate objects. This robot doesn’t even compare, except for one small trait. When it needs a tool, it can build it as its own appendage. This really is nothing more than making tools with a 3D printer. However, the normal boxy infrastructure is missing.

The print head is mounted on a single robot arm, and the tool is printed using hot melt glue in order to stick to a plate which makes up the business end of robot arm. In this case the robot needed to transport some water. It sets down the plate, uses the hot melt extruder to print a cup on that plate, then picks it up again and uses it to move water from one bowl to the other. You can see it all in the video clip below the fold.

Sure, it’s just baby steps. But hot melt glue sticks are light weight, and don’t require much energy to melt. This makes for a perfect combination as a portable tool shop.

Continue reading “Hot glue appendages may be predecessor to the flow metal of the T-1000″