Ask Hackaday: Bringing Your Design To Market

While many of us have made and documented our open source projects, not many of us have tried to sell our design to the masses. [Scott] developed, marketed, and “bootstrapped” a cool looking MIDI controller. Now, before you get your jumpers in a bunch – the project is completely open source. [Scott] documented the entire process of not only the design, but the trials and tribulations of bringing it to market as well. Calculating costs, FCC testing and the many other challenges of bringing a consumer electronics device to market are all detailed in his blog. Join me while we look at the highs and lows of his interesting and eventually worthwhile journey.

Putting yourself into a game where orders are in the tens of thousands, with hundreds of thousands of dollars changing hands is not easy when you’re just a guy with an idea and a soldering iron. [Scott] was up for the challenge, however. He quickly realized that much of the margin is spent on advertising and to cover risk. On his last order, some of the paint was chipping off. He had to fix the paint and repackage everything – all at his cost.

He also talks about the learning process of product design along the way. His original idea was to make a volume controller, but couldn’t sell a single one. He was forced to redesign the software into the MIDI controller as it exists today. He tried to launch a Kickstarter, but was rejected. This turned out to be a good thing, however, because he would have wound up kickstarting a product that didn’t work.

For advertising, he relied on Google and made some extremely detailed tutorials for his product. Many of them can be used for other MIDI controllers, and often come up in Google searches. Smart. Very smart.

Be sure to check out the video below, where [Scott] gets into some capacitive touch design theory, and talks about how not to cut your final product in half while on the CNC.

Have any of you ever tried to mass produce and sell one of your designs? Let us know in the comments!

Continue reading “Ask Hackaday: Bringing Your Design To Market”

Altoids Tin Network Analyzer

Network Analyzers are frequently used for measuring filters, making them extremely valuable for building radios and general mucking about with RF. They are, however, extremely expensive. You can, however, build one in an Altoids tin with an Arduino Nano, a small screen, and an AD9850 frequency synthesis module picked up on eBay.

The basic idea behind a network analyzer is to feed a frequency into a device, and measure the amplitude comingĀ out of the device, and plot this relationship over a frequency. [Bill Meara] has been a human network analyzer before, changing frequencies and plotting the output of devices under test by hand. [DuWayne] (KV4QB) build a device to automate the entire process.

The block diagram is easy enough – an AD9850 sends a signal to the device, and this is measured by the Arduino with a small amplifier. The signal is measured again when it comes back from the device under test, and all this is plotted on a small display. Simple, and [DuWayne] is getting some very good readings with a lowpass filter and crystal filter made on a small solderless breadboard.