Nature Vs Nurture In Beethoven’s Genome

When it comes to famous musicians, Beethoven is likely to hit most top ten charts. Researchers recently peered into his genome to see if they could predict his talent by DNA alone.

Using a previously-identified polygenetic index (PGI) for musical talent, which finds the propensity of certain genes to influence a given trait after a genome-wide association study (GWAS), the researchers were able to compare samples of Beethoven’s DNA to that of two separate population studies with known musical achievement data.

Much to the relief of those who saw Gattaca as a cautionary tale, the scientists found that Beethoven scored only around the tenth percentile for the ability to keep a beat according to his genetic markers. According to the researchers, using genetic markers to predict abilities of an individual can lead to incorrect conclusions, despite their usefulness for group level analyses.

Curious about more musical science? How about reconstructing “Another Brick in The Wall (Part I)” from brainwaves or building a Square Laser Harp?

MIDI Spoon Piano Is Exactly What You Think It Is

Pianos traditionally had keys made out of ivory, but there’s a great way to avoid that if you want to save the elephants. You can build a keyboard using spoons, as demonstrated by [JCo Audio]. 

The build relies on twelve metal spoons to act as the keys of the instrument. They’re assembled into a wooden base in a manner roughly approximating the white and black keys of a conventional piano keyboard, using 3D-printed inserts to hold them in place. They’re hooked up to a Raspberry Pi Pico via a Pico Touch 2 board, which allows the spoons to be used as capacitive touch pads. Code from [todbot] was then used to take input from the 12 spoons and turn it into MIDI data. From there, hooking the Pi Pico up to a PC running some kind of MIDI synth is enough to make sounds.

It’s a simple build, but a functional one. Plus, it lets you ask your friends if they’d like to hear you play the spoons. The key here is to make a big show of hooking your instrument up to a laptop while explaining you’re not going to play the spoons a la the folk instrument, but you’re going to play a synth instead. Then you should use the spoon keyboard to play emulated spoon samples anyway. It’s called doubling down. Video after the break.

Continue reading “MIDI Spoon Piano Is Exactly What You Think It Is”

Flute Now Included On List Of Human Interface Devices

For decades now, we’ve been able to quickly and reliably interface musical instruments to computers. These tools have generally made making and recording music much easier, but they’ve also opened up a number of other out-of-the-box ideas we might not otherwise see or even think about. For example, [Joren] recently built a human interface device that lets him control a computer’s cursor using a flute instead of the traditional mouse.

Rather than using a MIDI interface, [Joren] is using an RP2040 chip to listen to the flute, process the audio, and interpret that audio before finally sending relevant commands to control the computer’s mouse pointer. The chip is capable of acting as a mouse on its own, but it did have a problem performing floating point calculations to the audio. This was solved by converting these calculations into much faster fixed point calculations instead. With a processing improvement of around five orders of magnitude, this change allows the small microcontroller to perform all of the audio processing.

[Joren] also built a Chrome browser extension that lets a flute player move a virtual cursor of sorts (not the computer’s actual cursor) from within the browser, allowing those without physical hardware to try out their flute-to-mouse skills. If you prefer your human interface device to be larger, louder, and more trombone-shaped we also have a trombone-based HID for those who play the game Trombone Champ.

Wozamp Turns Apple II Into Music Player

Besides obvious technological advancements, early computers built by Apple differed in a major way from their modern analogs. Rather than relying on planned obsolescence as a business model, computers like the Apple II were designed to be upgradable and long-term devices users would own for a substantially longer time than an iPhone or Macbook. With the right hardware they can even be used in the modern era as this project demonstrates by turning one into a music player.

The requirements for this build are fairly short; an Apple II with a serial card and a piece of software called surl-server which is a proxy that allows older computers to communicate over modern networks. In this case it handles transcoding and resampling with the help of a Raspberry Pi 3. With that all set up, the media player can play audio files in an FTP network share or an online web radio station. It can also display album art on the Apple II monitor and includes a VU meter that is active during playback.

Although the 11.52 kHz sampling rate and 5-bit DAC may not meet the stringent requirements of audiophile critics, it’s an impressive build for a machine of this era. In fact, the Apple II has a vibrant community still active in the retrocomputing world, with plenty of projects built for it including others related to its unique audio capabilities. And if you don’t have an original Apple II you can always get by with an FPGA instead.

Documenting Real Hidden Messages In Music

During the 1980s, a moral panic swept across the landscape with the mistaken belief that there were Satanic messages hidden in various games, books, and music that at any moment would corrupt the youth of the era and destroy society as we knew it. While completely unfounded, it turns out that there actually were some hidden messages in vinyl records of the time although they’d corrupt children in a different way, largely by getting them interested in computer science. [Dandu] has taken to collecting these historic artifacts, preserving the music and the software on various hidden recordings.

While it was possible to record only programs or other data to vinyl, much in the same way that cassette tapes can be used as a storage medium, [Dandu]’s research focuses mostly on records, tapes, and CDs which had data included alongside music. This includes not only messages or images, but often entire computer programs. In some cases these programs were meant to be used with the accompanying music, as was the case for The Other Side Of Heaven by Kissing The Pink with a program for the BBC Micro. Plenty of other contemporary machines are represented here too including the ZX Spectrum, Atari, Apple II, and the Commodore 64. The documentation extends through the CD era and even into modern music platforms like Spotify and Apple Music.

The process of extraction and recovery is detailed for each discovery, making it a comprehensive resource for retro computing enthusiasts stretching from the 80s to now. There are likely a few hidden pieces of data out there hidden in various antique storage media that [Dandu] hasn’t found yet, either. You could even make your own records with hidden programs provided you have some musical and programming talents, and a laser engraver for the record itself.

Generative AI Now Encroaching On Music

While it might not seem like it to a novice, music turns out to be a highly mathematical endeavor with precise ratios between chords and notes as well as overall structure of rhythm and timing. This is especially true of popular music which has even more recognizable repeating patterns and trends, making it unfortunately an easy target for modern generative AI which is capable of analyzing huge amounts of data and creating arguably unique creations. This one, called Suno, does just that for better or worse.

Unlike other generative AI offerings that are currently available for creating music, this one is not only capable of generating the musical underpinnings of the song itself but can additionally create a layer of intelligible vocals as well. A deeper investigation of the technology by Rolling Stone found that the tool uses its own models to come up with the music and then offloads the text generation for the vocals to ChatGPT, finally using the generated lyrics to generate fairly convincing vocals. Like image and text generation models that have come out in the last few years, this has the potential to be significantly disruptive.

While we’re not particularly excited about living in a world where humans toil while the machines create art and not the other way around, at best we could hope for a world where real musicians use these models as tools to enhance their creativity rather than being outright substitutes, much like ChatGPT itself currently is for programmers. That might be an overly optimistic view, though, and only time will tell.

Ancient Instrument Goes Digital: The Digi-Gurdy

The hurdy-gurdy is a fascinating string instrument dating from sometime around the 10th century. There is an active community of modern enthusiasts, but one can’t simply walk into a music shop and buy one. That’s where [XenonJohn] and the Digi-Gurdy come in, bringing some nice features while maintaining all the important elements of the original.

The mechanical keys and crank of the Hurdy-Gurdy are preserved in this modern digital incarnation.

The hurdy-gurdy works by droning strings with a rotating wheel, and the player applies pressure to those strings via keys to play combinations of notes. Here’s a video demonstrating what it sounds like to play one, and one can see a conceptual resemblance to bagpipes, among other things.

The Digi-Gurdy is a modern electronic version that maintains the mechanical elements while sending MIDI signals over USB. It has options for line-out or headphone output. A thriving online community has shaped its development since its inception years ago.

We hope this leaves you wanting to know more because [XenonJohn] has loads of details to share. The main website at digigurdy.com is jam-packed with information about this instrument and its construction, and the project page on Hackaday.io has more nitty-gritty design details and source files for those who crave hardware specifics.

If [XenonJohn]’s name sounds familiar, it’s because we’ve admired his work on DIY self-balancing vehicles over the years. He also submitted an earlier version as an entry into the Hackaday Prize. His careful attention to detail shines through. Check out the two videos (embedded just below the page break): the first demonstrates the Digi-Gurdy, and the second shows off the construction and insides. You’d think a MIDI hurdy-gurdy would be unique, but, actually, we’ve seen more than one.

Continue reading “Ancient Instrument Goes Digital: The Digi-Gurdy”