Arduino (PCI) Express

It is almost impossible these days to find a PC with old ISA card slots. Full size PCI card slots are in danger of going the same way. Many PCs today feature PCI Express connectors. PCI Express offers a lot of advantages including a small size, lower pin count, and a point-to-point serial bus topology that allows multiple simultaneous transfers between different pairs of end points. You’ll find PC Express connectors in things other than PCs too, including a lot of larger embedded systems.

If you ever wanted to prototype something on PCI Express, you’d usually turn to an FPGA. However, [moonpunchorg] posted a workable design for an Arduino on a mini PCI Express board. (As [imroy264] points out in the comments, the board is using the USB port present on the PCI-E connector.) The design files use KiCAD so it should be fairly easy to replicate or change. Naturally, there are pins on the edges to access I/O ports and power. You do need to use ISP to program the Arduino bootloader on the chip.

The board appears to a host computer as a SparkFun as a Pro Micro 3.3V board, and from there you could easily add function to a computer with a PCI Express slot using nothing more than the Arduino IDE. The board is known to work with the VIA VAB-600 Springboard and VIA VAB-820 boards, although it is likely to work with other PCI Express hosts, too.

DDR-ing A Simon Game With A Raspberry Pi

Since 1998 we’ve been privileged to partake in an arcade game known as Dance Dance Revolution, but before that, way back in the 70’s, was the Simon game. It’s essentially a memory game that asks the player to remember a series of lights and sounds. [Uberdam] decided to get the best of both worlds and mixed the two together creating this giant foot controlled Simon game. (English translation.)

The wood platform that serves as the base of the project was fitted with four capacitive sensors, each one representing a “color” on the Simon game. When a player stomps on a color, a capacitive sensor sends a signal to a relay which in turn notifies the Raspberry Pi brain of the input. The Pi also takes care of showing the player the sequence of colored squares that must be stepped on, and keeps track of a player’s progress on a projector.

This is a pretty good way of showing how a small, tiny computer like the Raspberry Pi can have applications in niche environments while also being a pretty fun game. We all remember Simon as being frustrating, and we can only imagine how jumping around on a wooden box would make it even more exciting. Now, who can build a robot that can beat this version of Simon?

Continue reading “DDR-ing A Simon Game With A Raspberry Pi”