Blue Origin Rolls Out Test Article For Next-Gen Rocket

By any metric you care to use, this is a very exciting time for America’s space program. NASA is refocusing their efforts towards the Moon and beyond, SpaceX is launching routine crew and cargo flights to the International Space Station with reusable rockets, and if you’ve got deep enough pockets, there are now multiple companies offering suborbital pleasure trips requiring little more than a few hours worth of training. It’s taken longer than many people had hoped, but it seems we’re finally making the confident strides necessary to truly utilize space’s vast resources.

But things are just getting started. A new generation of massive reusable rockets are currently being developed, which promise to make access to space cheaper and faster than ever before. We’ve seen quite a bit of SpaceX’s Starship, thanks in no small part to the dramatic test flights that the media-savvy company has been regularly live streaming to YouTube. But Blue Origin, founded by Amazon’s Jeff Bezos, has been far more secretive about their New Glenn. That is, until now.

GS1 under construction in Florida.

On November 8th, Blue Origin rolled out their GS1 simulator for the New Glenn’s first stage. This stand-in for the real rocket will never fly, but it’s designed to perfectly recreate the dimensions, center of gravity, and mass, of the real thing. Ground teams will use the GS1 to practice safely transporting the booster, which is approximately half the length of the Saturn V, from their production facility to Launch Complex 36 (LC-36) at Cape Canaveral. It will also be used to test the fit and function of various pieces of ground support equipment, and eventually, the second stage stacking procedure.

For the uninitiated, it might seem like this is a lot of fuss over what’s ultimately just a hollow metal tube. But the introduction of a test article such as this has traditionally been a major milestone during the design and construction of rockets and spacecraft, dating back to the “boilerplate” test capsules used during the Mercury, Gemini, and Apollo programs; a sure sign that what was just an idea is now becoming a reality.

Continue reading “Blue Origin Rolls Out Test Article For Next-Gen Rocket”

Tomatoes Are Not Guncotton

[Integza] hates tomatoes, but loves rocketry. Thus, he decided to see if he could process his most-loathed fruit into some sort of rocket fuel, or at least something relatively flammable. The experiment ended poorly, but the science behind it is interesting.

The basic idea is that tomatoes are largely made up of water, sugar, and cellulose. Thus, if you nitrate that cellulose, it becomes nitrocellulose, also known as guncotton. Guncotton is was once used to replace gunpowder in firearms, though today it’s often used by magicians to create ashless flashes of flame.

To achieve this, [Integza] first attempted to make regular guncotton using a 50:50 mixture of nitric acid and sulfuric acid. The cotton was then neutralized with a baking soda and water mixture to remove excess acid, and the cotton dried. Once tested, it burned quickly as you’d expect from guncotton.

After removing the sugars from tomatoes with water, soap, hydrogen peroxide, and bleach, the tomatoes were then dried to remove excess water before also getting the acid treatment. They were then similarly neutralized, dried, and tested. One tomato did burn rather quickly, while the others merely fizzled.

One of the reasons behind this may have been due to the composition of the tomatoes. Tomatoes often consist of a mixture of cellulose, hemicellulose, and lignin, these latter components are known for producing inferior guncotton. The ramshackle preparation may have had some effect on the results. Let’s just say and it’s not advisable to work with fuming acids without protective gear and a fume hood, either.

The video’s title claims that the tomatoes were turned into rocket fuel, which is far beyond the actual results of the experiment. However, with some more advanced chemical processing, we could certainly see the fruit becoming a mite more flammable than it was. You’re probably better off just sticking to straight cotton though, for the best results. Video after the break.

Continue reading “Tomatoes Are Not Guncotton”

Arduino Plays The Glasses

Have you ever been on a city street and seen a busker playing music on glasses? Each glass has a different amount of water and produces a different note when tapped. [Cyberlab] must have seen them and created an Arduino robot to play tunes on glasses. You can see the result in the video below.

If we had done this, we might have had a solenoid per glass or used some linear component like a 3D printer axis to pick different glasses. [Cyberlab] did something smarter. The glasses go in a circle and a stepper motor points at the correct glass and activates a solenoid. The result is pretty good and it is a lot simpler than any of our ideas.

If you aren’t musically inclined, you might wonder how you’d program the songs. There’s an example of taking a music box score from a website — apparently, there are lots of these — and removing any polyphony from it. The site mentioned even has an editor where you can import MIDI files and work with them to produce a music box strip that you could then convert. Then you encode each note as a number from 0 to 6.

Of course, you also have to fill your glasses with the right amount of water. A piano tuning phone app should be useful. We’ve seen this done in a linear fashion before. You can even use a single glass for many notes with a little ingenuity.

Continue reading “Arduino Plays The Glasses”