Delta Clipper: A 1990s Reusable Single-Stage To Orbit Spaceship Prototype

With all the talk of SpaceX and Blue Origin sending rockets to orbit and vertically landing part or all of them back on Earth for reuse you’d think that they were the first to try it. Nothing can be further from the truth. Back in the 1990s, a small team backed by McDonnell Douglas and the US government vertically launched and landed versions of a rocket called the Delta Clipper. It didn’t go to orbit but it did perform some extraordinary feats.

Origin Of The Delta Clipper

DC-XAThe Delta Clipper was an unmanned demonstrator launch vehicle flown from 1993 to 1996 for testing vertical takeoff and landing (VTOL) single-stage to orbit (SSTO) technology. For anyone who watched SpaceX testing VTOL with its Grasshopper vehicle in 2012/13, the Delta Clipper’s maneuvers would look very familiar.

Initially, it was funded by the Strategic Defence Initiative Organization (SDIO). Many may remember SDI as “Star Wars”, the proposed defence system against ballistic missiles which had political traction during the 1980s up to the end of the Cold War.

Ultimately, the SDIO wanted a suborbital recoverable rocket capable of carrying a 3,000 lb payload to an altitude of 284 miles (457 km), which is around the altitude of the International Space Station. It also had to return with a soft landing to a precise location and be able to fly again in three to seven days. Part of the goal was to have a means of rapidly replacing military satellites should there be a national emergency.

The plan was to start with an “X” subscale vehicle which would demonstrate vertical takeoff and landing and do so again in three to seven days. A “Y” orbital prototype would follow that. In August 1991, McDonnell-Douglas won the contract for the “X” version and the possible future “Y” one. The following is the story of that vehicle and its amazing feats.

Continue reading “Delta Clipper: A 1990s Reusable Single-Stage To Orbit Spaceship Prototype”

Would You Look At That Yaw Control

[Jeff Bezos] might be getting all the credit for developing a rocket that can take off and land vertically, but [Joe Barnard] is doing it the hard way. He’s doing it with Estes motors you can pick up in any hobby shop. He’s doing it with a model of a Falcon 9, and he’s on his way to launching and landing a rocket using nothing but solid propellant.

The key to these launches is, of course, the flight controller, This is the Signal flight controller, and it has everything you would expect from a small board meant to mount in the frame of a model rocket. There’s a barometer, an IMU, a buzzer (important!), Bluetooth connectivity, and a microSD card slot for data logging. What makes this flight computer different is the addition of two connectors for standard hobby servos. With the addition of a 3D printed adapter, this flight controller adds thrust vectoring control. That means a rocket will go straight up without the use of fins.

We’ve seen [Joe]’s work before, and things have improved significantly in the last year and a half. The latest update from last weekend was a scale model (1/48) of the Falcon Heavy. In a 45-second video, [Joe]’s model of the Falcon Heavy launches on the two booster rockets, lights the center core, drops the two boosters and continues on until the parachutes unfurl. This would be impressive without active guidance of the motor, and [Joe] is adding servos and launch computers to the mix. It’s awesome, and certainly unable to be exported from the US.

Retrotechtacular: The Saturn Propulsion System

“We choose to go to the Moon in this decade and do the other things, not because they are easy, but because they are hard; because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one we intend to win, and the others, too”

When President Kennedy gave his famous speech in September 1962, the art of creating liquid-fueled rocket engines of any significant size was still in its relative infancy. All the rocketry and power plants of the Saturn series of rockets that would power the astronauts to the Moon were breaking entirely new ground, and such an ambitious target required significant plans to be laid. What is easy to forget from a platform of five decades of elapsed time is the scale of the task set for the NASA engineers of the early 1960s.

The video below the break is from 1962, concurrent with Kennedy’s speech, and it sets out the proposed development of the succession of rocket motors that would power the various parts of the Saturn family. We arrive at the famous F-1 engine that would carry the mighty Saturn 5 and start its passengers on their trip to the Moon at a very early stage in its development, after an introduction to liquid rocket engines from the most basic of first principles. We see rockets undergoing testing on the stand at NASA’s Huntsville, Alabama facility, along with rather superlative descriptions of their power and capabilities.

The whole production is very much in the spirit of the times, though unexpectedly it makes no mention whatsoever of the Space Race with the Soviet Union, whose own rocket program had put the first satellite and the first man into space, and which was also secretly aiming for the moon. It’s somewhat jarring to understand that the people in this video had little idea that such an ambitious program would be as successful as it became, or even that in the wake of Kennedy’s assassination the following year there would be such an effort to fulfill the aim set out in his speech to reach the moon within the decade.

The moon landings, and the events and technology that made them possible, are a subject of considerable fascination for our community. We must have covered innumerable stories about artifacts from the Apollo era in these pages, and no doubt more will continue to come our way in the future. Films like this one do not tell us quite the same story as does a real artifact, but their values lies in capturing the optimism of the time. Anything seemed possible in 1962, and those who lived through the decade were lucky enough to see this proven.

Fifty years from now, what burgeoning engineering efforts will we look back on?

Continue reading “Retrotechtacular: The Saturn Propulsion System”

Warhammer 40K Model Rocket Launcher

[Daniel L]’s friend has a passion for Warhammer 40K. [Daniel] himself has a similar zeal for perfection in details. When he remembered a long-forgotten request to build a working rocket launcher for one of his friend’s Warhammer 40K models — well — the result was inevitably awesome.

The MicroMaxx motors — one of the smallest commercial rocket motors on the market — he had on hand seemed to fit the model of the Hyperios Whirlwind anti-air rocket tank. Modeling and 3D printing all the parts proved to be easier than assembling the incredibly detailed model — on top of sanding and filling gaps, a perfect paint job was no simple matter.

The launcher has two main circuit boards: a STM32F407 microcontroller brain, a low-power A20737A Bluetooth module, and a voltage regulator. The second has the constant current source and MOSFET output stages for the rocket igniters. Pitch and yaw handled by a pair of RC servo motors. [Daniel L] has also gone the extra mile by creating an accompanying iPhone app using the Anaren Atmosphere IDE — it’s simple but it works!

Continue reading “Warhammer 40K Model Rocket Launcher”

Recreating the Mythbusters Rocket Chevy – At Scale

If you tuned into the first ever episode of Mythbusters way back when, you’ll remember a certain rocket-powered Chevy Impala. [David Windestal] decided to recreate this – at 1:10 scale.

The car in question is a Hobbyking Desert Fox RC car – normally a four-wheel drive truck which ships ready-to-run, making it a great way to get a project started quickly. Rocket power is provided by the same type of motor used in the Swedish Rocket Knives we’ve covered previously.

Initial testing proves unsuccessful – the car simply tumbles out of control when the rocket is fired. It takes a beating, losing a wheel in the process. Following on from this, a decision is made to cook up a slower burning rocket motor and switch to an asphalt surface for testing. This is much more succesful and the car begins to see some properly high speeds, nearly peeling the tyres off the rim in the process!

It’s a fun concept that could likely be replicated with off-the-shelf rocket motors, too. Throw us your ideas for better rocket powered transports in the comments below.

[Thanks to Heinrich for the tip!]
Continue reading “Recreating the Mythbusters Rocket Chevy – At Scale”

Trike with Water-Rocket Engine

Many of us made soda bottle rockets for science class. Some of us didn’t have that opportunity, and made them in the backyard because that’s what cool kids do. Water rockets work on the premise that if water is evacuated from one side of a container, the container will accelerate away from the evacuation point. Usually, this takes the form of a 2-liter bottle, a tire pump and some cardboard fins. [François Gissy] modified the design but not the principle for his water trike which reached 261 kph or 162mph.

Parts for the trike won’t be found in the average kitchen but many of them could be found in a motorcycle shop, except for the carbon fiber wrapped water tank. There wasn’t a throttle on this rocket, the clutch lever was modified to simply open the valve and let the rider hold on until the water ran out. The front brake seemed to be intact, thank goodness.

Powering vehicles in unconventional ways is always a treat to watch and [François Gissy]’s camera-studded trike is no exception. If you like your water rockets pointed skyward, check out this launch pad for STEM students and their water rockets. Of course, [Colin Furze] gets a shout-out for his jet-powered go-kart.

Thank you, [Itay], for the tip.

Continue reading “Trike with Water-Rocket Engine”

Open Source Modular Rocket Avionics Package

Cambridge postgraduate student [Adam Greig] helped design a rocket avionics system consisting of a series of disc-shaped PCBs arranged in a stack. There’s a lot that went into the system and you can get a good look at it all through the flickr album.

Built with the help of Cambridge University Spaceflight, the Martlet is a 3-staging sounding rocket that lifts to 15km/50K feet on Cesaroni Pro98 engines. [Adam]’s control system uses several Arm Cortex M4s on various boards rather than having just one brain controlling everything.

Each disc is a module that plays a specific role in the system. There are a couple of power supply boards sporting twin LTC2975 able to supply custom power to a dozen different circuits. The power system has a master control board also sporting an M4. There’s an IMU board with the guidance system — accelerometer, magnetometer, gyroscope, and barometer, all monitored by an algorithm that computes the rocket’s position and attitude in-flight. There’s a radio board with a GPS receiver and an ISM band radio transceiver for telemetry, as well as a datalogger with 10 thermocouple measurement channels. Engines are controlled by the pyro board which controls firing currents on four different channels. The vertical spacers also serve to transmit power and data to neighboring boards.

If you’re interested in learning more, check out the project’s code and schematics on [Adam]’s GitHub repository.

[Adam] is no stranger to these pages, with his Nerf Vulcan turret published a few years back, as well as his balloon tracking rig published more recently. Photos are CC-SA and can be found in [Adam]’s Flickr feed.