1D Fireworks Are Nice And Quiet

Maybe you do it out of respect for the dogs and parents of young children in the neighborhood. Or maybe you do it because they’re harmful to the environment, or just because it’s too darn cold outside. Whatever your reasoning for not setting off fireworks, don’t fret — you can probably put together your own silent one-dimensional “fireworks” display from what you’ve got in the parts bin.

[Daniel Westhof]’s design is simple, requiring little more than a Wemos D1 Mini and a strip of WS2812 LEDs. Once activated, a red rocket shoots up from the ground and detonates, sending lights in both directions on the strip to imitate the bombs bursting in air. It’s controlled with a small push button switch, and there’s a deliciously large red LED indicator that shows the thing is ready for detonation.

You might be surprised to find that there’s a wide array of 1D gaming and animation projects out there, many of which made possible by the ubiquitous addressable RGB LED strip. We’ve seen a dungeon crawler, at least two different versions of the classic PONG, and even the makings of a simplified Wolfenstein.

How To Land A Model Rocket Vertically

Perhaps most readers will remember when they saw the first SpaceX demonstration of a rocket stage landing vertically on the pad under control. It’s something of a shock to be reminded that their first suborbital demonstration “hops” were around a decade ago, and how quickly what was once so special has become commonplace. We’re now in the era of the more complex model rockets having the same capability, with [BPS.space] managing it last year, and now [TTS Aerospace] sharing a video showing how they achieved the same feat.

The basics of the system revolve around a directed rocket nozzle, but to make it work is a lot more complex than simply hooking up a flight controller and calling it good. The steps in arriving at a landable rocket are examined, with plenty of failures shown along the way. Even the legs are more complex than they might appear, having to combine lightness, ease of unfurling under the power of elastic, and enough strength and give to survive a rough landing.

Those of us from countries where model rocketry is a highly licensed activity can only look on in envy at these projects, and we look forward to seeing where this avenue leads next. We covered the [BPS.space] rocket last year, should you be interested.

Continue reading “How To Land A Model Rocket Vertically”

A 3D printed copper aerospike engine cutaway showing the intricate, organic-looking channels inside. It is vaguely reminiscent of a human torso and lungs.

3D Printed Aerospike Was Designed By AI

We’re still in the early days of generatively-designed objects, but when combined with the capabilities of 3D printing, we’re already seeing some interesting results. One example is this new copper aerospike engine. [via Fabbaloo]

A collaboration between startups Hyperganic (generative AI CAD) and AMCM (additive manufacturing), this 800 mm long aerospike engine may be the most complicated 3D print yet. It continues the exciting work being done with 3D printing for aerospace applications. The complicated geometries of rocket nozzles of any type let additive manufacturing really shine, so the combination of generative algorithms and 3D printed nozzles could result in some big leaps in coming years.

Aerospikes are interesting as their geometry isn’t pressure dependent like more typical bell-shaped rocket nozzles meaning you only need one engine for your entire flight profile instead of the traditional switching mid-flight. A linear aerospike engine was one of the main selling points for the cancelled VentureStar Space Shuttle replacement.

This isn’t the only generative design headed to space, and we’ve covered a few projects if you’re interested in building your own 3D printed rocket nozzles or aerospike engines. Just make sure you get clearance from your local aviation regulator before your project goes to space!

Thinking Inside The Box

Last week, I wrote about NASA’s technology demonstrator projects, and how they’ve been runaway successes – both the Mars rovers and the current copter came from such experimental beginnings. I argued that letting some spirit of experimentation into an organization like NASA is probably very fruitful from time to time.

And then a few days later, we saw SpaceX blow up a rocket and completely shred its launch platform in the process. Or maybe it was the other way around, because it looks like the concrete thrown up by the exhaust may have run into the engines, causing the damage that would lead to the vehicle spinning out of control. SpaceX was already working on an alternative launch pad using water-cooled steel, but it ran what it had. They’re calling the mission a success because of what they learned, but it’s clearly a qualified success. They’ll rebuild and try again.

In comparison, the other US-funded rocket run by Boeing, the SLS suffered years of delays, cost tremendous amounts of money, and has half the lift of SpaceX’s Super Heavy. But it made it to space. Science was done, many of the CubeSats onboard got launched, the unmanned capsule orbited the moon, and splashed down safely back on earth. They weren’t particularly taking any big risks, but they got the job done.

The lore around SpaceX is that they’re failing forward to success. And it’s certainly true that they’ve got their Falcon 9 platform down to a routine, at a lower cost per launch than was ever before possible, and that their pace has entirely shaken up the conservative space industry. They’ll probably get there with their Starship / Super Heavy too. SLS was an old-school rocket, and they had boring old flame diverters on their launch pad, which means that SLS will never take off from Mars. On the other hand, one of the two systems has put a payload around the Moon.

Maybe there’s something to be said for thinking inside the box from time to time as well?

The Intricacies Of Starting A Rocket Engine

Rockets are conceptually rather simple: you put the pointy bit upwards and make sure that the bit that will go flamey points downwards before starting the engine(s). Yet how to start each rocket engine type in a way that’s both safe and effective? Unlike in the Wile E. Coyote cartoons, real-life rocket engines do not have a fuse you light up before dashing off to a safe distance. Rather they use increasingly more complicated methods, which depend on the engine type and fuels used. In a recent article written by [] with accompanying video featuring everyone’s favorite Everyday Astronaut [Tim Dodd], we’re taken through the intricacies of how flamey ends are made. Continue reading “The Intricacies Of Starting A Rocket Engine”

Rocket Mounted 3D Printed Camera Wheel Tries, Succeeds, And Also Fails

[Joe] at BPS.space has a thing for rockets, and his latest quest is to build a rocket that will cross the Kármán Line and launch into the Final Frontier. And being the owner of a YouTube channel, he wants to have excellent on-board video that he can share. The trouble? Spinning. A spinning rocket is a stable rocket, especially as altitude increases. So how would [Joe] get stable video from a rocket spinning at several hundred degrees per second? That’s the question being addressed in the video below the break.

The de-spun video looks quite good

Rather than use processing power to stabilize video digitally, [Joe] decided to take a different approach: Cancelling out the spin with a motor, essentially making a camera-wielding reaction wheel that would stay oriented in one direction, no matter how fast the rocket itself is spinning.

Did it work? Yes… and no. The design was intended to be a proof of concept, and in that sense there was a lot of success and some excellent video was taken. But as with many proof of concept prototypes, the spinning camera module has a lot of room for improvement. [Joe] goes into some details about the changes he’ll be making for revision 2, including a different motor and some software improvements. We certainly look forward to seeing the progress!

To get a better idea of the problem that [Joe] is trying to solve, check out this 360 degree rocket cam that we featured a few years ago.

Continue reading “Rocket Mounted 3D Printed Camera Wheel Tries, Succeeds, And Also Fails”

Amateur Rocket Aims For The Kármán Line, One Launch At A Time

When it comes to high-powered rocketry, [BPS.space] has the unique distinction of being the first to propulsively land a solid-fueled model rocket. How could he top that? Well, we’re talking about actual rocket science here, and the only way is up! All the way up to the Kármán line: 100 km. How’s he going to get there? That’s the subject of the video below the break.

Getting to space is notoriously difficult because it’s impossible to fully test for the environment in which a rocket will be flying. But there is quite a lot that can be tested, and those tests are the purpose of a rocket that [Joe] at [BPS.space] calls Avalanche. Starting with a known, simple design as a test bed, numerous launches are planned in order to iterate quickly through several launches- three of which are covered just in this video.

The goal with Avalanche isn’t to get to the Kármán line, but to learn the lessons needed to build a far bigger rocket that will. A home-brewed guidance system, a gimballed spin-stabilized 4K camera, and the descent system are among those being tested and perfected.

Of course, you don’t have to be a rocket scientist to have fun with prototyping. Sometimes you just want to 3D print a detonation engine, no matter how long it won’t last. Why not?

Continue reading “Amateur Rocket Aims For The Kármán Line, One Launch At A Time”