Rocket Science With The Other SpaceX

When you say that something’s not rocket science you mean that it’s not as hard to understand or do as it may seem. The implication is that rocket science is something which is hard and best left to the likes of SpaceX or NASA. But that’s not the hacker spirit.

Rocket science with BPS.Space[Joe Barnard] recently had an unsuccessful flight of his Falcon Heavy’s second stage and gives a very clear explanation of what went wrong using those two simple concepts along with the thrust, which in this case is just the force applied to the moment arm.

And no, you didn’t miss a big happening with SpaceX. His Falcon Heavy is a homebrew one using model rocket solid boosters. Mind you, it is a little more advanced than that as he’s implemented thrust vectoring by controlling the engine’s direction using servo motors.

And therein lies the problem. The second stage’s inertia is so small and the moment arm so short that even a small misalignment in the thrust vectoring results in a big effect on the moment arm causing the vehicle to deviate from the desired path. You can see this in the first video below. Another issue he discusses is the high drag, but we’ll leave that to the second video below which contains his explanation and some chart analysis.

So yeah, maybe rocket science is rocket science. But there’s no better way to get your feet wet then to get out there and get building.

Continue reading “Rocket Science With The Other SpaceX”

The Largest Aircraft Ever Built Will Soon Launch Rockets To Space

Deep in the mojave, the largest aircraft ever made will soon be making test flights. This is the Stratolaunch, and it’s measured the largest to ever fly based on wingspan. The Stratolaunch was constructed out of two 747s, and is designed for a single purpose: as a mobile launch platform for orbital rockets.

There are a couple of ways to measure the size of an aircraft. The AN-225 Mriya has the highest payload capacity, but only one of those was ever built (though that might change soon). The Spruce Goose was formerly the largest aircraft by wingspan, but it only flew once, and only in ground effect. The Stratolaunch is in another category entirely. This is an aircraft that contains some of the largest composite structures on the planet. Not only can you park a school bus between the fuselages of the Stratolaunch, you can strap that school bus to the plane and carry it up to 30,000 feet.

But why build this astonishing aircraft? The reasons go back more than a decade, and the end result is a spaceplane.

Continue reading “The Largest Aircraft Ever Built Will Soon Launch Rockets To Space”

Build Your Own Two-Stage Water Rockets

Water rockets are one of the most fun and exciting science-adjacent activities one can take part in during the summer, and are popular with children and adults alike. Designs range from a bike pump with a cork in a bottle, up to significantly more advanced hardware. [Air.command]’s two-stage water rocket definitely fits into the latter category.

The build is initially somewhat confronting in its complexity, but after a thorough read-through the operating principles become clear. It’s an all-mechanical setup which relies on the weight of the upper stage and the initial acceleration of the rocket to keep the two stages coupled. It’s only when the first stage stops delivering thrust that a spring forces the two stages apart, and the upper stage rockets ever higher.

Parts-wise, everything is fairly accessible – with pieces cribbed from garden hose fittings, retractable pens and other household ephemera. It’s not the easiest thing to put together, but with perseverance and some tweaking and tuning, it’s definitely achievable for the home gamer, with no advanced tools or techniques required.

Now that you’ve got a two-stage rocket under construction, you might want to consider upgrading your launchpad. Video after the break.

Continue reading “Build Your Own Two-Stage Water Rockets”

Delta Clipper: A 1990s Reusable Single-Stage To Orbit Spaceship Prototype

With all the talk of SpaceX and Blue Origin sending rockets to orbit and vertically landing part or all of them back on Earth for reuse you’d think that they were the first to try it. Nothing can be further from the truth. Back in the 1990s, a small team backed by McDonnell Douglas and the US government vertically launched and landed versions of a rocket called the Delta Clipper. It didn’t go to orbit but it did perform some extraordinary feats.

Origin Of The Delta Clipper

DC-XAThe Delta Clipper was an unmanned demonstrator launch vehicle flown from 1993 to 1996 for testing vertical takeoff and landing (VTOL) single-stage to orbit (SSTO) technology. For anyone who watched SpaceX testing VTOL with its Grasshopper vehicle in 2012/13, the Delta Clipper’s maneuvers would look very familiar.

Initially, it was funded by the Strategic Defence Initiative Organization (SDIO). Many may remember SDI as “Star Wars”, the proposed defence system against ballistic missiles which had political traction during the 1980s up to the end of the Cold War.

Ultimately, the SDIO wanted a suborbital recoverable rocket capable of carrying a 3,000 lb payload to an altitude of 284 miles (457 km), which is around the altitude of the International Space Station. It also had to return with a soft landing to a precise location and be able to fly again in three to seven days. Part of the goal was to have a means of rapidly replacing military satellites should there be a national emergency.

The plan was to start with an “X” subscale vehicle which would demonstrate vertical takeoff and landing and do so again in three to seven days. A “Y” orbital prototype would follow that. In August 1991, McDonnell-Douglas won the contract for the “X” version and the possible future “Y” one. The following is the story of that vehicle and its amazing feats.

Continue reading “Delta Clipper: A 1990s Reusable Single-Stage To Orbit Spaceship Prototype”

Would You Look At That Yaw Control

[Jeff Bezos] might be getting all the credit for developing a rocket that can take off and land vertically, but [Joe Barnard] is doing it the hard way. He’s doing it with Estes motors you can pick up in any hobby shop. He’s doing it with a model of a Falcon 9, and he’s on his way to launching and landing a rocket using nothing but solid propellant.

The key to these launches is, of course, the flight controller, This is the Signal flight controller, and it has everything you would expect from a small board meant to mount in the frame of a model rocket. There’s a barometer, an IMU, a buzzer (important!), Bluetooth connectivity, and a microSD card slot for data logging. What makes this flight computer different is the addition of two connectors for standard hobby servos. With the addition of a 3D printed adapter, this flight controller adds thrust vectoring control. That means a rocket will go straight up without the use of fins.

We’ve seen [Joe]’s work before, and things have improved significantly in the last year and a half. The latest update from last weekend was a scale model (1/48) of the Falcon Heavy. In a 45-second video, [Joe]’s model of the Falcon Heavy launches on the two booster rockets, lights the center core, drops the two boosters and continues on until the parachutes unfurl. This would be impressive without active guidance of the motor, and [Joe] is adding servos and launch computers to the mix. It’s awesome, and certainly unable to be exported from the US.

Retrotechtacular: The Saturn Propulsion System

“We choose to go to the Moon in this decade and do the other things, not because they are easy, but because they are hard; because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one we intend to win, and the others, too”

When President Kennedy gave his famous speech in September 1962, the art of creating liquid-fueled rocket engines of any significant size was still in its relative infancy. All the rocketry and power plants of the Saturn series of rockets that would power the astronauts to the Moon were breaking entirely new ground, and such an ambitious target required significant plans to be laid. What is easy to forget from a platform of five decades of elapsed time is the scale of the task set for the NASA engineers of the early 1960s.

The video below the break is from 1962, concurrent with Kennedy’s speech, and it sets out the proposed development of the succession of rocket motors that would power the various parts of the Saturn family. We arrive at the famous F-1 engine that would carry the mighty Saturn 5 and start its passengers on their trip to the Moon at a very early stage in its development, after an introduction to liquid rocket engines from the most basic of first principles. We see rockets undergoing testing on the stand at NASA’s Huntsville, Alabama facility, along with rather superlative descriptions of their power and capabilities.

The whole production is very much in the spirit of the times, though unexpectedly it makes no mention whatsoever of the Space Race with the Soviet Union, whose own rocket program had put the first satellite and the first man into space, and which was also secretly aiming for the moon. It’s somewhat jarring to understand that the people in this video had little idea that such an ambitious program would be as successful as it became, or even that in the wake of Kennedy’s assassination the following year there would be such an effort to fulfill the aim set out in his speech to reach the moon within the decade.

The moon landings, and the events and technology that made them possible, are a subject of considerable fascination for our community. We must have covered innumerable stories about artifacts from the Apollo era in these pages, and no doubt more will continue to come our way in the future. Films like this one do not tell us quite the same story as does a real artifact, but their values lies in capturing the optimism of the time. Anything seemed possible in 1962, and those who lived through the decade were lucky enough to see this proven.

Fifty years from now, what burgeoning engineering efforts will we look back on?

Continue reading “Retrotechtacular: The Saturn Propulsion System”

Warhammer 40K Model Rocket Launcher

[Daniel L]’s friend has a passion for Warhammer 40K. [Daniel] himself has a similar zeal for perfection in details. When he remembered a long-forgotten request to build a working rocket launcher for one of his friend’s Warhammer 40K models — well — the result was inevitably awesome.

The MicroMaxx motors — one of the smallest commercial rocket motors on the market — he had on hand seemed to fit the model of the Hyperios Whirlwind anti-air rocket tank. Modeling and 3D printing all the parts proved to be easier than assembling the incredibly detailed model — on top of sanding and filling gaps, a perfect paint job was no simple matter.

The launcher has two main circuit boards: a STM32F407 microcontroller brain, a low-power A20737A Bluetooth module, and a voltage regulator. The second has the constant current source and MOSFET output stages for the rocket igniters. Pitch and yaw handled by a pair of RC servo motors. [Daniel L] has also gone the extra mile by creating an accompanying iPhone app using the Anaren Atmosphere IDE — it’s simple but it works!

Continue reading “Warhammer 40K Model Rocket Launcher”