Can A Coin Cell Make 27 Volts?

We have all no doubt at some point released the magic smoke from a piece of electronics, it’s part of what we do. But sometimes it’s a piece of electronics we’re not quite ready to let go, and something has to be fixed. Chris Greening had a board just like that, a 27 volt generator from an LCD panel, and he crafted a new circuit for it.

The original circuit (which we think he may have drawn incorrectly), uses a small boost converter IC with the expected inductor and diode. His replacement is the tried and tested joule thief, but with a much higher base resistor than its normal application in simply maintaining a battery voltage. It sucks 10 mA from the battery and is regulated with a Zener diode, but there’s still further room for improvement. Adding an extra transistor and using the Zener as a feedback component causes the oscillator to shut off as the voltage increases, something which in this application is fine.

It’s interesting to see a joule thief pushed into a higher voltage application like this, but we sense perhaps it could be made more efficient by seeking out an equivalent to the boost converter chip. Or even a flyback converter.

One thought on “Can A Coin Cell Make 27 Volts?

  1. Could you make it switch the other way around and make it all yellow? Then you could put a black mask over it and create switchable signs.

Leave a Reply to DudeCancel reply

Please be kind and respectful to help make the comments section excellent. (Comment Policy)

This site uses Akismet to reduce spam. Learn how your comment data is processed.