Self-Driving Cars And The Fight Over The Necessity Of Lidar

If you haven’t lived underneath a rock for the past decade or so, you will have seen a lot of arguing in the media by prominent figures and their respective fanbases about what the right sensor package is for autonomous vehicles, or ‘self-driving cars’ in popular parlance. As the task here is to effectively replicate what is achieved by the human Mark 1 eyeball and associated processing hardware in the evolutionary layers of patched-together wetware (‘human brain’), it might seem tempting to think that a bunch of modern RGB cameras and a zippy computer system could do the same vision task quite easily.

This is where reality throws a couple of curveballs. Although RGB cameras lack the evolutionary glitches like an inverted image sensor and a big dead spot where the optical nerve punches through said sensor layer, it turns out that the preprocessing performed in the retina, the processing in the visual cortex and analysis in the rest of the brain is really quite good at detecting objects, no doubt helped by millions of years of only those who managed to not get eaten by predators procreating in significant numbers.

Hence the solution of sticking something like a Lidar scanner on a car makes a lot of sense. Not only does this provide advanced details on one’s surroundings, but also isn’t bothered by rain and fog the way an RGB camera is. Having more and better quality information makes subsequent processing easier and more effective, or so it would seem.

Continue reading “Self-Driving Cars And The Fight Over The Necessity Of Lidar”

Why Sodium-Ion Batteries Are Terrible For Solar Storage

These days just about any battery storage solution connected to PV solar or similar uses LiFePO4 (LFP) batteries. The reason for this is obvious: they have a very practical charge and discharge curve that chargers and inverters love, along with a great round trip efficiency. Meanwhile some are claiming that sodium-ion (Na+) batteries would be even better, but this is not borne out by the evidence, with [Will Prowse] testing and tearing down an Na+ battery to prove the point.

The OCV curve for LFP vs Na+ batteries.
The OCV curve for LFP vs Na+ batteries.

The Hysincere brand battery that [Will] has on the test bench claims a nominal voltage of 12 V and a 100 Ah capacity, which all appears to be in place based on the cells found inside. The lower nominal voltage compared to LFP’s 12.8 V is only part of the picture, as can be seen in the OCV curve. Virtually all of LFP’s useful capacity is found in a very narrow voltage band, with only significant excursions when reaching around >98% or <10% of state of charge.

What this means is that with existing chargers and inverters, there is a whole chunk of the Na+ discharge curve that’s impossible to use, and chargers will refuse to charge Na+ batteries that are technically still healthy due to the low cell voltage. In numbers, this means that [Will] got a capacity of 82 Ah out of this particular 100 Ah battery, despite the battery costing twice that of a comparable LFP one.

Yet even after correcting for that, the internal resistance of these Na+ batteries appears to be significantly higher, giving a round trip efficiency of 60 – 92%, which is a far cry from the 95% to 99% of LFP. Until things change here, [Will] doesn’t see much of a future for Na+ beyond perhaps grid-level storage and as a starter battery for very cold climates.

Continue reading “Why Sodium-Ion Batteries Are Terrible For Solar Storage”

How Simple Can A Superhet Be

If you cultivate an interest in building radios it’s likely that you’ll at some point make a simple receiver. Perhaps a regenerative receiver, or maybe a direct conversion design, it’ll take a couple of transistors or maybe some simple building-block analogue ICs. More complex designs for analogue radios require far more devices; if you’re embarking on a superhetrodyne receiver in which an oscillator and mixer are used to generate an intermediate frequency then you know it’ll be a hefty project. [VK3YE] is here to explode that assumption, with a working AM broadcast band superhet that uses only two transistors.

The circuit diagram of the radio
It doesn’t get much simpler than this.

A modern portable radio will almost certainly use an all-in-one SDR-based chip, but in the golden age of the transistor radio the first stage of the receiver would be a single transistor that was simultaneously RF amplifier, oscillator, and mixer. The circuit in the video below does this , with a ferrite rod, the familiar red-cored oscillator coil, and a yellow-cored IF transformer filtering out the 455 kHz mixer product between oscillator and signal.

There would normally follow at least one more transistor amplifying the 455 kHz signal, but instead the next device is both a detector and an audio amplifier. Back in the day that would have been a germanium point contact diode, but now the transistor has a pair of 1N4148s in its biasing. We’re guessing this applies a DC bias to counteract the relatively high forward voltage of a silicon diode, but we could be wrong.

We like this radio for its unexpected simplicity and clever design, but also because he’s built it spiderweb-style. We never expected to see a superhet this simple, and even if you have no desire to build a radio we hope you’ll appreciate the ingenuity of using simple transistors to the max.

Continue reading “How Simple Can A Superhet Be”