Ore To Iron In A Few Seconds: New Chinese Process Will Revolutionise Smelting

The process of ironmaking has relied for centuries on iron ore, an impure form of iron oxide, slowly being reduced to iron by carbon monoxide in a furnace. Whether that furnace is the charcoal fire of an Iron Age craftsman or a modern blast furnace, the fundamental process remains the same, even if the technology around it has been refined. Now details are emerging of a new take on iron smelting from China, which turns what has always been a slow and intensive process into one that only takes a few seconds. So-called flash ironmaking relies on the injection of a fine iron ore powder into a superheated furnace, with the reduction happening explosively and delivering a constant stream of molten iron.

Frustratingly there is little detail on how it works, with the primary source for the news coverage being a paywalled South China Morning Post article. The journal article alluded to has proved frustratingly difficult to find online, leaving us with a few questions as to how it all works. Is the reducing agent still carbon monoxide, for example, or do they use another one such as hydrogen? The interesting part from an economic perspective is that it’s said to work on lower-grade ores, opening up the prospect for the Chinese steelmakers relying less on imports. There’s no work though on how the process would deal with the inevitable slag such ore would create.

If any readers have journal access we’d be interested in some insight in the comments, and we’re sure this story will deliver fresh information over time. Having been part of building a blast furnace of our own in the past, it’s something we find interesting

Disc Film,When Kodak Pushed Convenience Too Far

Having a penchant for cheap second-hand cameras can lead to all manner of interesting equipment. You never know what the next second-hand store will provide, and thus everything from good quality rangefinders an SLRs to handheld snapshot cameras can be yours for what is often a very acceptable price. Most old cameras can use modern film in some way, wither directly or through some manner of adapter, but there is one format that has no modern equivalent and for which refilling a cartridge might be difficult. I’m talking about Kodak’s Disc, the super-compact and convenient snapshot cameras which were their Next Big Thing in the early 1980s. In finding out its history and ultimate fate, I’m surprised to find that it introduced some photographic technologies we all still use today.

Easy Photography For The 1980s

Since their inception, Kodak specialised in easy-to-use consumer cameras and films. While almost all the film formats you can think of were created by the company, their quest was always for a super-convenient product which didn’t require any fiddling about to take photographs. By the 1960s this had given us all-in-one cartridge films and cameras such as the Instamatic series, but their enclosed rolls of conventional film made them bulkier than required. The new camera and film system for the 1980s would replace roll film entirely, replacing it with a disc of film that would be rotated between shots to line up the lens on an new unexposed part of its surface. Thus the film cartridge would be compact and thinner than any other, and the cameras could be smaller, thinner, and lighter too. The Disc format was launched in 1982, and the glossy TV adverts extolled both the svelteness of the cameras and the advanced technology they contained. Continue reading “Disc Film,When Kodak Pushed Convenience Too Far”

Magic Eye Images In Your Spreadsheet

Ah, the 1990s. It was a simpler time, when the web was going to be democratic and decentralised, you could connect your Windows 95 PC to the internet without worrying much about it being compromised, and freely download those rave music MP3s. Perhaps you had a Global Hypercolor T-shirt and spent a summer looking like the sweaty idiot you were, and it’s certain you desperately squinted at a magic eye image in a newspaper (remember newspapers?) trying to see the elephant or whatever it was. If you’d like to relive that experience, then [Dave Richeson] has a magic eye image generator for Microsoft Excel.

Unfortunately a proportion of the population including your scribe lack the ability to see these images, a seemingly noise-like pattern of dots on the page computationally generated to fool the visual processing portion of your brain to generate a 3D image. The Excel sheet allows you to create the images, but perhaps most interesting is the explanation of the phenomenon and mathematics which go along with it. Along with a set of test images depicting mathematical subjects, it’s definitely worth a look.

You can download a template and follow the instructions, and from very limited testing here we can see that LibreOffice doesn’t turn its nose up at it, either. Give it a go, and learn afresh the annoyance of trying to unfocus your eyes.

The Audiophile Carrot

The widely quoted carrot factoid that the vegetable’s orange colour is the result of patriotic Dutch farmers breeding them that way may be an urban myth, but it’s certainly true that they can pass an audio signal in a time of need. [Julian Krause] follows up on a Reddit meme of a carrot being used to join two phono plugs, and appears to find the organic interconnect to be of good quality.

We had to admit a second look at a calendar to be sure that it’s not April 1st, but while his manner is slightly tongue in cheek it seems he’s really characterising the audio performance of a carrot. What he finds is a bit of attenuation, some bass cut, and an intrusion of RF interference pickup, but surprisingly, not a bad distortion figure.

Of course, we’re guessing the real point of the exercise is to poke fun at the world of excessive hi-fi equipment, something we’ve been only too glad to have a go at ourselves from time to time. But if the tests are to be taken at face value it seems that in a pinch, a carrot will do as a means to hook together line level audio cables, no doubt lending a sweet and crunchy overtone to the result. The video is below the break, for your entertainment.

Continue reading “The Audiophile Carrot”

A Look Inside IKEA’s Vallhorn Motion Sensor Teardown

A good source of hackable home automation parts has come for a while in the form of inexpensive modules offered by large retailers such as Lidl, or IKEA. They’re readily available and easy to play with, they work with open source hubs, so what’s not to like! As an example, [Circuit Valley] has an IKEA Vallhorn motion sensor for a teardown, it’s as you might expect, a passive infrared sensor (PIR) sensor coupled with a Zigbee interface.

Inside the ultrasonic welded case is a small PCB and a Fresnel lens on the inside of the top cover, and a small PCB for the electronics. We applaud the use of a Swiss Army knife can opener as a spudger. The interesting part comes in identifying the individual components: the Silicon Labs EFR32MG21 SoC is easy enough, but another mystery 8-pin chip is more elusive. The part number suggests an Analog Devices op-amp for signal conditioning the PIR output, but the pinout seems not to support it and from here we think it’s too expensive a part for a budget item like this.

There’s a handy header for talking to the SoC, which we’d love to report is open and ready to be hacked, but we’re not getting too optimistic. Even if not hackable though, we’re guessing many of you find uses for these things. Continue reading “A Look Inside IKEA’s Vallhorn Motion Sensor Teardown”

A Hundred Year Old Solid State Amplifier

Conventional wisdom has it that the solid state era in electronics began in 1948 with the invention of the transistor, or if you wish to split hairs, with the 1930s invention by the Russian [Oleg Losev] of an early form of tunnel diode. But there’s an earlier amplifier technology that used a solid state circuit which is largely forgotten, and [AWA Communication Technologies Museum] has featured it in a new video. We’re talking of course about the carbon microphone amplifier, a piece of telephone technology which made its way into consumer electronics.

The carbon microphone is a container of loosely packed carbon granules acted upon by a diaphragm. Vibrations from sound compress and decompress the granules, changing the electrical resistance of the carbon. It was the standard microphone used in telephone handsets for most of the twentieth century. Being a resistor it can be placed in a potential divider circuit that produces some significant voltage swings, so when the vibrations come from a high-impedance earpiece it can make an amplifier. It’s not a very good amplifier, it has lousy bandwidth, distortion, and noise characteristics, but it was just about good enough to be paired with a 1920s crystal set. In the video below the break we see a variety of the devices, and even hear them in action sounding very tinny indeed. At the time it must have seemed miraculous to be at the forefront of the new technology though, and we can’t help admiring some of the construction intricacies.

Carbon microphone amplifiers may be rare today, but for all that we’ve touched on them before.

Continue reading “A Hundred Year Old Solid State Amplifier”

Unconventional Oil Production, All You Need To Know

It’s fair to say that climate change is perhaps the greatest challenge facing our planet, and while much attention is directed towards solutions to the problems it presents, perhaps there’s less attention given to the the other side of the equation in the hydrocarbon industry. For example we all think we know something about hydraulic fracking wells, but how much do we really know?

[John Thurmond] is a geologist who has recently completed a long career in the oil industry, and he gave an informative talk on the matter at the summer’s EMF Camp in the UK. It makes for an interesting watch, as he leads the viewer through the process in detail, before discussing what should and shouldn’t cause worry.

We learn that fracking has two parts: first the hydraulic fracking itself, and then the re-injection of the toxic fracking well water released from underground along with the oil or gas. It seems the water released from the rocks a 10,000 ft depth contains all manner of toxic and even radioactive compounds, and the usual means of disposal is to inject it back into the ground at a much lower depth. He makes the point that while the hazards associated with the fracking are low, those of the re-injection are high.

The talk finishes up with perhaps the most interesting point, by looking at the nature of opposition to fracking, or indeed any other controversial development. Such things are inevitably surrounded by a swirling mess of half-truths, and his point is that identifying those easily deflected as not true is key to understanding the whole thing. It’s presented from an expert and factual perspective that’s so often lacking in this arena, and thus we think it’s worth a watch.

Continue reading “Unconventional Oil Production, All You Need To Know”